-
The numerical prediction of transition from laminar to turbulent flow has proven to be an arduous challenge to computational fluid dynamics (CFD). Few approaches can provide routine accurate results within the cost limitations of engineering applications. In the present paper described is the application of a -Re transition model in combination with the delay detached eddy simulation (DDES) and Ffowcs Williams and Hawkings (FW-H) acoustic analogy method to cylinder vortex/vortex induced noise at a subcritical Reynolds number. In the process of numerical simulation, a traditional DDES based on the full-turbulence model SST is carried out for comparison and a 7th-order weighted compact nonlinear scheme (WCNS-E8T7) is adopted to ensure that the physical models are not affected by numerical dissipation or dispersion. In the first case, single cylinder cross-flow at ReD =4.3104 and Ma=0.21, is considered as a benchmarking problem for validating turbulence models and aerodynamic noise prediction methods. Its aerodynamic coefficients, St, CL and CD at root-mean-square (rms) and averaged values are measured by Szepessy and Bearman, while an acoustic measurement was recently made at Ecole Centrale de Lyon. The traditional DDES only based on SST model (SST-DDES) delays the instability of the shear layer on the sides of the cylinder, which leads to the recirculation zone in mean flow to grow and the induced drag to increase. Moreover, the vortex shedding frequency predicted by SST-DDES is larger than the actual value, which makes the whole sound pressure level (SPL) spectrum move toward high frequency region. However, combining the -Re transition model, the DDES (called Tran-DDES in the present article) can give the results in good agreement with the experimental data. In the second case considered is an airfoil in the wake of the cylinder. The flow condition is similar to that in the first case and the experimental results are also obtained at Ecole Centrale de Lyon. The issue of SST-DDES in recirculation zone in mean flow is weakened, which relates to the interaction between the airfoil and cylinder wake, the prediction of mean flow by SST-DDES is similar to that by the Tran-DDES. But in terms of the rms values of turbulent fluctuation components and SPL, the predictions by Tran-DDES are still better than those by SST-DDES.
-
Keywords:
- transition flows /
- aeroacoustics /
- detached eddy simulation /
- weighted compact nonlinear scheme
[1] Hodara J, Smith M 2017 AIAA J. 1 1
[2] Seo J, Chang K, Moon Y 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2573
[3] Boudet J, Grosjean N, Jacob M 2005 Intl J. Aeroacoust 4 93
[4] Giret J C, Sengissen A, Moreau S, Sanjos M 2015 AIAA J. 53 1062
[5] Jiang Y, Mao M, Deng X, Liu H 2015 J. Fluid Mech. 779 1
[6] Langtry R, Menter F 2009 AIAA J. 47 2894
[7] Spalart P 2009 Annu. Rev. Fluid Mech. 41 181
[8] Menter M, Kuntz M, Bender R 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6-9, 2003 AIAA 2003-767
[9] Langtry R, Gola J, Menter F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9-12, 2006 AIAA 2006-395
[10] Srensen N, Bechmann A, Zahle F 2011 Wind Energ. 14 77
[11] You J, Kwon O 2013 Comput. Fluids 80 63
[12] Qiao L, Bai J, Hua J, Wang C 2014 Appl. Mech. Materials 444-445 374
[13] Snchez-Rocha M, Menon S 2009 J. Comput. Phys. 228 2037
[14] Wang S Y, Wang G X, Dong Y D, Deng X G (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2016 国防科技大学学报 38 14]
[15] Spalart P, Jou W H, Strelets M, Allmaras S 1997 1st AFOSR International Conference on DNS/LES Ruston, Louisiana, August 4-8, 1997
[16] Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2001 AlAA 2001-0879
[17] Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181
[18] Francescantonio P 1997 J. Sound Vibration 202 491
[19] Kato C, Iida A, Takano Y, Fujita H, Ikegawa M 1993 31st Aerospace Scmces Meeting Exhibit Reno, Nevada, January 11-14, 1993 AIAA 1993-145
[20] Deng X, Zhang H 2000 J. Comput. Phys. 165 22
[21] Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533
[22] Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082
[23] Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705 (in Chinese) [冈敦殿, 易仕和, 赵云飞 2015 64 054705]
[24] Wang S Y, Wang G X, Dong Y D, Deng X G 2017 Acta Phys. Sin. 66 184701 (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2017 66 184701]
[25] Wang S, Deng X, Wang G, Xu D, Wang D 2016 Inter. J. Comput. Fluid Dyn. 30 7
[26] Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100
[27] Szepessy S, Bearman P 1992 J. Fluid Mech. 234 191
[28] van Leer B 1979 J. Comput. Phys. 32 101
[29] Jacob M, Boudet J, Casalino D, Michard M 2005 Theoret. Comput. Fluid Dyn. 19 171
[30] Agrawal B, Sharma A 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16-20, 2014 AIAA 2014-3295
[31] Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluid 37 402
[32] Galdeano S, Barr S, Rau N 2010 16th AIAA/CEAS Aeroacoustics Conference Stockholm, Sweden, June 7-9, 2010 AIAA 2010-3702
-
[1] Hodara J, Smith M 2017 AIAA J. 1 1
[2] Seo J, Chang K, Moon Y 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2573
[3] Boudet J, Grosjean N, Jacob M 2005 Intl J. Aeroacoust 4 93
[4] Giret J C, Sengissen A, Moreau S, Sanjos M 2015 AIAA J. 53 1062
[5] Jiang Y, Mao M, Deng X, Liu H 2015 J. Fluid Mech. 779 1
[6] Langtry R, Menter F 2009 AIAA J. 47 2894
[7] Spalart P 2009 Annu. Rev. Fluid Mech. 41 181
[8] Menter M, Kuntz M, Bender R 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6-9, 2003 AIAA 2003-767
[9] Langtry R, Gola J, Menter F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9-12, 2006 AIAA 2006-395
[10] Srensen N, Bechmann A, Zahle F 2011 Wind Energ. 14 77
[11] You J, Kwon O 2013 Comput. Fluids 80 63
[12] Qiao L, Bai J, Hua J, Wang C 2014 Appl. Mech. Materials 444-445 374
[13] Snchez-Rocha M, Menon S 2009 J. Comput. Phys. 228 2037
[14] Wang S Y, Wang G X, Dong Y D, Deng X G (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2016 国防科技大学学报 38 14]
[15] Spalart P, Jou W H, Strelets M, Allmaras S 1997 1st AFOSR International Conference on DNS/LES Ruston, Louisiana, August 4-8, 1997
[16] Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2001 AlAA 2001-0879
[17] Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181
[18] Francescantonio P 1997 J. Sound Vibration 202 491
[19] Kato C, Iida A, Takano Y, Fujita H, Ikegawa M 1993 31st Aerospace Scmces Meeting Exhibit Reno, Nevada, January 11-14, 1993 AIAA 1993-145
[20] Deng X, Zhang H 2000 J. Comput. Phys. 165 22
[21] Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533
[22] Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082
[23] Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705 (in Chinese) [冈敦殿, 易仕和, 赵云飞 2015 64 054705]
[24] Wang S Y, Wang G X, Dong Y D, Deng X G 2017 Acta Phys. Sin. 66 184701 (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2017 66 184701]
[25] Wang S, Deng X, Wang G, Xu D, Wang D 2016 Inter. J. Comput. Fluid Dyn. 30 7
[26] Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100
[27] Szepessy S, Bearman P 1992 J. Fluid Mech. 234 191
[28] van Leer B 1979 J. Comput. Phys. 32 101
[29] Jacob M, Boudet J, Casalino D, Michard M 2005 Theoret. Comput. Fluid Dyn. 19 171
[30] Agrawal B, Sharma A 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16-20, 2014 AIAA 2014-3295
[31] Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluid 37 402
[32] Galdeano S, Barr S, Rau N 2010 16th AIAA/CEAS Aeroacoustics Conference Stockholm, Sweden, June 7-9, 2010 AIAA 2010-3702
Catalog
Metrics
- Abstract views: 5881
- PDF Downloads: 117
- Cited By: 0