-
为了更加客观地描述实际的车辆跟驰行为, 在优化速度模型的基础上, 通过引入横向分离参数并提出超车期望和虚拟前车的概念, 建立了考虑横向分离与超车期望的车辆跟驰模型.对模型进行线性稳定性分析, 得到了模型稳定性条件, 发现车辆横向分离、超车期望和虚拟前车的位置的增加, 在车流密度较小、车速较快的情况下, 使得交通流稳定区域增大, 但在车流密度较大、车速较慢的情况下, 反而使得交通流稳定区域减小.数值模拟结果验证了模型稳定性分析的结果, 表明在交通瓶颈处等交通流密度较大、运行缓慢的区域, 为抑制交通拥堵, 应该限制车辆的横向偏移和超车行为的发生.In order to depict the real car-following behaviors better, in this paper we present a new car-following model by introducing the effect parameter of lateral separation distance and proposing the concepts of overtaking expectation and virtual front car based on OV model. The stability condition of the model is obtained by using the linear stability theory. It is found that with the increase of lateral separation and overtaking expectation, the stability region of traffic flow increases at a low density while it decreases at a high density. The results of numerical simulation verify the analytic results. Thus, in some places like traffic bottlenecks, which usually have a high traffic density, it is necessary to restrict the lateral movement and overtaking behavior of vehicles for suppressing the traffic jam.
-
Keywords:
- traffic flow /
- car-following model /
- lateral separation /
- overtaking expectation
[1] Reusch B 1950 Oesterreichisches Ingenieur-Archir 4 193
[2] Pipes L A 1953 J. Appl. Phys. 24 274
[3] Newell G F 1961 Oper. Res. 9 209
[4] Bando M, Nakayama A, Sugiyama Y 1995 Phys. Rev. E 51 1035
[5] Komatsu T S, Sasa S 1995 Phys. Rev. E 52 5574
[6] Bando M, Hasebe K, Nakanishi K, Nakayama A 1998 Phys. Rev. E 58 5429
[7] Sugiyama Y, Yamada H 1998 Traffic and Granular Flow'97 (Berlin: Springer)
[8] Berg P, Wilson E 2005 Traffic and Granular Flow'03 (Berlin: Springer)
[9] Helbing D, Tilch B 1998 Phys. Rev. E 58 133
[10] Jiang R, Wu Q S, Zhu Z J 2001 Phys. Rev. E 64 017101
[11] Xue Y, Dong L Y, Yuan Y W, Dai S Q 2002 Acta Phys. Sin. 51 492 (in Chinese) [薛郁, 董力耘, 袁以武, 戴世强 2002 51 492]
[12] Xue Y 2003 Acta Phys. Sin. 52 2750 (in Chinese) [薛郁 2003 52 2750]
[13] Gunay B 2007 Trans. Res. B 41 722
[14] Jin S, Wang D H 2010 Physica A 389 4654
[15] Jin S, Wang D H 2011 Trans. Res. Record 2249 7
[16] Jin S, Wang D H 2012 Phys. Lett. A 376 153
-
[1] Reusch B 1950 Oesterreichisches Ingenieur-Archir 4 193
[2] Pipes L A 1953 J. Appl. Phys. 24 274
[3] Newell G F 1961 Oper. Res. 9 209
[4] Bando M, Nakayama A, Sugiyama Y 1995 Phys. Rev. E 51 1035
[5] Komatsu T S, Sasa S 1995 Phys. Rev. E 52 5574
[6] Bando M, Hasebe K, Nakanishi K, Nakayama A 1998 Phys. Rev. E 58 5429
[7] Sugiyama Y, Yamada H 1998 Traffic and Granular Flow'97 (Berlin: Springer)
[8] Berg P, Wilson E 2005 Traffic and Granular Flow'03 (Berlin: Springer)
[9] Helbing D, Tilch B 1998 Phys. Rev. E 58 133
[10] Jiang R, Wu Q S, Zhu Z J 2001 Phys. Rev. E 64 017101
[11] Xue Y, Dong L Y, Yuan Y W, Dai S Q 2002 Acta Phys. Sin. 51 492 (in Chinese) [薛郁, 董力耘, 袁以武, 戴世强 2002 51 492]
[12] Xue Y 2003 Acta Phys. Sin. 52 2750 (in Chinese) [薛郁 2003 52 2750]
[13] Gunay B 2007 Trans. Res. B 41 722
[14] Jin S, Wang D H 2010 Physica A 389 4654
[15] Jin S, Wang D H 2011 Trans. Res. Record 2249 7
[16] Jin S, Wang D H 2012 Phys. Lett. A 376 153
计量
- 文章访问数: 6440
- PDF下载量: 868
- 被引次数: 0