-
The evolution of two-level atomic system, in which the initial state is excited state, is investigated by adjusting the structural parameters of the dynamic and static ideal photonic band-gap environment reservoir. In a static state (no modulation), we study the effects of half width, center resonant frequency, and specific gravity on the evolution of energy level population. The results show that when the half width or the specific gravity decreases, in the atomic system there happens decoherence, and the energy dissipation to the outside becomes slower. When the center resonant frequency increases, there exists no resonance between the library central resonant frequency and the atom transition frequency, then the attenuation suppression effect occurs, and the time of atomic attenuation to ground state is longer. An actual quantum system is not isolated, so it is inevitable that it interacts with its ambient environment. Owing to the influence of environment, in the system there appears an irreversible quantum decoherence phenomenon. Therefore, how to effectively suppress the decoherence of quantum system becomes an important problem in quantum information science. Linington and Garraway (2008 Phys. Rev. A 77 033831) pointed out that the evolution process of a two-level atom quantum state can be manipulated by a dynamic dissipative environment. So, we use the dynamic cavity environment to control the evolution of spontaneous emission from an excited two-level atom. The dynamic modulation form for the center resonant frequency of the ideal photonic band-gap environment reservoir includes the rectangular single pulse, rectangular periodic pulse, and slow continuous period. Owing to the periodic modulation, the atoms are affected by different environments. On this basis, the influence of dynamic modulation form on the atomic population evolution is discussed. It is found that no matter what form the dynamic modulation is in, the attenuation inhibition in the evolution of atomic system is evident. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.
-
Keywords:
- quantum control /
- dynamic surroundings /
- excited atom
[1] Yang Y P, Fleischhauer M, Zhu S Y 2003 Phys. Rev. A 68 022103
[2] Fisher M C, Medina B G, Raizen M G 2001 Phys. Rev. Lett. 87 040402
[3] Paspalakis E, Knight P L 2000 J. Modern Opt. 47 1025
[4] Purcell E M, Torrey H C, Pound R V 1946 Phys. Rev. 69 37
[5] Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809
[6] Wang X H, Kivshar Y S, Gu B Y 2004 Phys. Rev. Lett. 93 073901
[7] Sun X D, Jiang X Q 2008 Opt. Lett. 33 110
[8] Lodahl P, van Driel A F, Nikblaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654
[9] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87
[10] Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488
[11] Lin L H 2009 Chin. Phys. B 18 588
[12] Lu J H, Meng Z M, Liu H Y, Feng T H, Dai Q F, Wu L J, Guo Q, Hu W, Lan S 2009 Chin. Phys. B 18 4333
[13] Wu C W, Han Y, Deng Z J, Liang L M, Li C Z 2010 Chin. Phys. B 19 010313
[14] Vahala K J 2003 Nature 424 839
[15] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817
[16] Xing R, Xie S Y, Xu J P, Yang Y P 2017 Acta Phys. Sin. 66 014202 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2017 66 014202]
[17] Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831
[18] Garraway B M 1997 Phys. Rev. A 55 2290
[19] Zhang Y J, Man Z X, Xia Y J, Guo G C 2010 Eur. Phys. J. D 58 397
[20] Zhang Y J, Han W, Fan H, Xia Y J 2015 Ann. Phys. 354 203
[21] Huang X S, Liu H L, Yang Y P, Shi Y L 2011 Acta Phys. Sin. 60 024205 (in Chinese) [黄仙山, 刘海莲, 羊亚平, 石云龙 2011 60 024205]
[22] Huang X S, Liu H L 2011 Acta Phys. Sin. 60 034205 (in Chinese) [黄仙山, 刘海莲 2011 60 034205]
-
[1] Yang Y P, Fleischhauer M, Zhu S Y 2003 Phys. Rev. A 68 022103
[2] Fisher M C, Medina B G, Raizen M G 2001 Phys. Rev. Lett. 87 040402
[3] Paspalakis E, Knight P L 2000 J. Modern Opt. 47 1025
[4] Purcell E M, Torrey H C, Pound R V 1946 Phys. Rev. 69 37
[5] Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809
[6] Wang X H, Kivshar Y S, Gu B Y 2004 Phys. Rev. Lett. 93 073901
[7] Sun X D, Jiang X Q 2008 Opt. Lett. 33 110
[8] Lodahl P, van Driel A F, Nikblaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L 2004 Nature 430 654
[9] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87
[10] Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488
[11] Lin L H 2009 Chin. Phys. B 18 588
[12] Lu J H, Meng Z M, Liu H Y, Feng T H, Dai Q F, Wu L J, Guo Q, Hu W, Lan S 2009 Chin. Phys. B 18 4333
[13] Wu C W, Han Y, Deng Z J, Liang L M, Li C Z 2010 Chin. Phys. B 19 010313
[14] Vahala K J 2003 Nature 424 839
[15] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817
[16] Xing R, Xie S Y, Xu J P, Yang Y P 2017 Acta Phys. Sin. 66 014202 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2017 66 014202]
[17] Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831
[18] Garraway B M 1997 Phys. Rev. A 55 2290
[19] Zhang Y J, Man Z X, Xia Y J, Guo G C 2010 Eur. Phys. J. D 58 397
[20] Zhang Y J, Han W, Fan H, Xia Y J 2015 Ann. Phys. 354 203
[21] Huang X S, Liu H L, Yang Y P, Shi Y L 2011 Acta Phys. Sin. 60 024205 (in Chinese) [黄仙山, 刘海莲, 羊亚平, 石云龙 2011 60 024205]
[22] Huang X S, Liu H L 2011 Acta Phys. Sin. 60 034205 (in Chinese) [黄仙山, 刘海莲 2011 60 034205]
Catalog
Metrics
- Abstract views: 6028
- PDF Downloads: 89
- Cited By: 0