Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Linearization theory of small scale thermal blooming effect in non-Kolmogorov turbulent atmosphere

Zhang Peng-Fei Qiao Chun-Hong Feng Xiao-Xing Huang Tong Li Nan Fan Cheng-Yu Wang Ying-Jian

Citation:

Linearization theory of small scale thermal blooming effect in non-Kolmogorov turbulent atmosphere

Zhang Peng-Fei, Qiao Chun-Hong, Feng Xiao-Xing, Huang Tong, Li Nan, Fan Cheng-Yu, Wang Ying-Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High energy laser beams propagating in the atmosphere are subjected to a variety of effects, such as the absorption and scattering of molecule and aerosol, atmospheric turbulence effects, thermal blooming effects, and the interaction between turbulence and thermal blooming. In general, these atmospheric propagation effects degrade laser beam quality and reduce the beam power concentration at the target. With adaptive optics compensation, the beam quality can be modified. But small-scale perturbation has developed and the phase compensation becomes unstable in some conditions. The performance of adaptive-optics system is degraded, which effects can be well explained by small-scale linear theory of thermal blooming. However previous theoretical studies of small-scale thermal blooming focused on the Kolmogorov turbulence. In the past decade, experimental evidence has shown significant deviations from Kolmogorov model in certain portions of the atmosphere. An generalized power-law of non-Kolmogorov turbulence model has been introduced, which becomes quite popular in the optical propagation community. Numerous theoretical and developmental efforts have been made based on non-Kolmogorov turbulence model in recent years. Thus it is very meaningful and imperative to explore the theoretical mechanism of high energy laser phase compensation with non-Kolmogorov turbulence.In this study, the Strehl ratio of the thermal blooming phase compensation is generalized with the non-Kolmogorov turbulence spectrum, and the analytical expression is obtained based on the linear theory of small-scale thermal blooming. The influence of the turbulence spectrum on the phase compensation of the high energy laser is analyzed. The results show that the turbulence spectrum has an important influence on the phase compensation of turbulent thermal blooming effect. Under the same turbulence Fresnel number condition, the compensation effect is worse when the spectral index is closer to 3 and the compensation effect is better when the spectral index is close to 4. Under the same atmospheric coherence length condition or under the same turbulence refractive index constant condition, the Strehl ratio decreases with the increase of the thermal blooming effect when the spectral index is close to 3 and the decline rate of the Strehl ratio is slower when the turbulence spectrum index is close to 4. This is because as the turbulence spectrum exponent increases, the logarithmic amplitude fluctuation slows down due to the interaction between turbulence and thermal blooming. These theoretical results can provide some scientific bases and theoretical guidance for the practical applications of high energy laser transmission.
      Corresponding author: Qiao Chun-Hong, chqiao@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61405205).
    [1]

    Chambers D H, Karr T J, Morris J R, Cramer P, Viecelli J A, Gautesen A K 1990 Proc. SPIE 1221 83

    [2]

    Chambers D H, Viecelli J A, Karr T J 1990 Proc. SPIE 1221 220

    [3]

    Karr T J 1990 Proc. SPIE 1221 26

    [4]

    Karr T J 1989 J. Opt. Soc. Am. A 6 1038

    [5]

    Briggs R J 1987 Lawrence Livermore National Lab. Technical Report UCID-21118

    [6]

    Karr T J 1991 Appl. Opt. 30 363

    [7]

    Karr T J, Morris J R, Chambers D H, Viecelli J A, Cramer P G 1990 J. Opt. Soc. Am. B 7 1103

    [8]

    Karr T J, Rushford M C, Murray J R, Morris J R 1991 J. Opt. Soc. Am B 8 993

    [9]

    Johnson B, Schonfeld J F 1991 Opt. Lett. 16 1258

    [10]

    Johnson B, Primmerman C A 1989 Opt. Lett. 14 639

    [11]

    Higgs C, Fouche D G, Pearson C F 1992 Proc. SPIE 1628 210

    [12]

    Xue B, Cui L, Xue W, Bai X, Zhou F 2011 J. Opt. Soc. Am. A 28 912

    [13]

    Cui L Y, Xue B D, Cao X G, Dong J K, Wang J N 2010 Opt. Express 18 21269

    [14]

    Pérez L D G, Zunino L 2008 Opt. Lett. 33 572

    [15]

    Tan L, Du W, Ma J, Yu S, Han Q 2010 Opt. Express 18 451

    [16]

    Shan X, Liu M, Zhang N 2017 Opt. Eng. 56 026111

    [17]

    Zhou Y, Yuan Y, Qu J, Huang W 2016 Opt. Express 24 10682

    [18]

    Yan X, Zhang P F, Zhang J H, Qiao C H, Fan C Y 2016 Chin. Phys. B 25 84204

    [19]

    Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088

    [20]

    Wang Y J 1996 Ph. D. Dissertation (Hefei: Anhui Institute of Opitcs and Fine Mechanics, Chinese Academy of Sciences) (in Chinese) [王英俭 1996 博士学位论文(合肥: 中国科学院安徽光学精密机械研究所)]

    [21]

    Enguehard S, Hatfield B 2004 Proc. SPIE 5552 41

    [22]

    Enguehard S, Hatfield B 1994 J. Opt. Soc. Am. A 11 908

    [23]

    Enguehard S, Hatfield B 1991 Proc. SPIE 1408 178

    [24]

    Enguehard S, Hatfield B 1991 J. Opt. Soc. Am. A 8 637

    [25]

    Enguehard S, Hatfield B 1991 Proc. SPIE 1415 128

    [26]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Berllingham: SPIE) pp74-85

    [27]

    Lukin V P, Fortes B V 2002 Adaptive Beaming and Imaging in the Turbulence Atmosphere (Berllingham: SPIE) pp15-20

    [28]

    Toselli I, Andrews L C, Phillips R L, Ferrero V 2007 Proc. SPIE 6551 65510E

    [29]

    Tang H, Ou B, Luo B, Guo H, Dang A 2011 J. Opt. Soc. Am. A 28 1016

    [30]

    Zhou P, Ma Y, Wang X, Zhao H, Liu Z 2010 Opt. Lett. 35 1043

    [31]

    Beland R R 1995 Proc. SPIE 2375 6

    [32]

    Stribling B E, Welsh B M, Roggemann M C 1995 Proc. SPIE 2471 181

    [33]

    Enguehard S, Hatfield B 1995 Prog. Quant. Electron. 19 239

    [34]

    Tyson R K 1982 Appl. Opt. 21 787

  • [1]

    Chambers D H, Karr T J, Morris J R, Cramer P, Viecelli J A, Gautesen A K 1990 Proc. SPIE 1221 83

    [2]

    Chambers D H, Viecelli J A, Karr T J 1990 Proc. SPIE 1221 220

    [3]

    Karr T J 1990 Proc. SPIE 1221 26

    [4]

    Karr T J 1989 J. Opt. Soc. Am. A 6 1038

    [5]

    Briggs R J 1987 Lawrence Livermore National Lab. Technical Report UCID-21118

    [6]

    Karr T J 1991 Appl. Opt. 30 363

    [7]

    Karr T J, Morris J R, Chambers D H, Viecelli J A, Cramer P G 1990 J. Opt. Soc. Am. B 7 1103

    [8]

    Karr T J, Rushford M C, Murray J R, Morris J R 1991 J. Opt. Soc. Am B 8 993

    [9]

    Johnson B, Schonfeld J F 1991 Opt. Lett. 16 1258

    [10]

    Johnson B, Primmerman C A 1989 Opt. Lett. 14 639

    [11]

    Higgs C, Fouche D G, Pearson C F 1992 Proc. SPIE 1628 210

    [12]

    Xue B, Cui L, Xue W, Bai X, Zhou F 2011 J. Opt. Soc. Am. A 28 912

    [13]

    Cui L Y, Xue B D, Cao X G, Dong J K, Wang J N 2010 Opt. Express 18 21269

    [14]

    Pérez L D G, Zunino L 2008 Opt. Lett. 33 572

    [15]

    Tan L, Du W, Ma J, Yu S, Han Q 2010 Opt. Express 18 451

    [16]

    Shan X, Liu M, Zhang N 2017 Opt. Eng. 56 026111

    [17]

    Zhou Y, Yuan Y, Qu J, Huang W 2016 Opt. Express 24 10682

    [18]

    Yan X, Zhang P F, Zhang J H, Qiao C H, Fan C Y 2016 Chin. Phys. B 25 84204

    [19]

    Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088

    [20]

    Wang Y J 1996 Ph. D. Dissertation (Hefei: Anhui Institute of Opitcs and Fine Mechanics, Chinese Academy of Sciences) (in Chinese) [王英俭 1996 博士学位论文(合肥: 中国科学院安徽光学精密机械研究所)]

    [21]

    Enguehard S, Hatfield B 2004 Proc. SPIE 5552 41

    [22]

    Enguehard S, Hatfield B 1994 J. Opt. Soc. Am. A 11 908

    [23]

    Enguehard S, Hatfield B 1991 Proc. SPIE 1408 178

    [24]

    Enguehard S, Hatfield B 1991 J. Opt. Soc. Am. A 8 637

    [25]

    Enguehard S, Hatfield B 1991 Proc. SPIE 1415 128

    [26]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Berllingham: SPIE) pp74-85

    [27]

    Lukin V P, Fortes B V 2002 Adaptive Beaming and Imaging in the Turbulence Atmosphere (Berllingham: SPIE) pp15-20

    [28]

    Toselli I, Andrews L C, Phillips R L, Ferrero V 2007 Proc. SPIE 6551 65510E

    [29]

    Tang H, Ou B, Luo B, Guo H, Dang A 2011 J. Opt. Soc. Am. A 28 1016

    [30]

    Zhou P, Ma Y, Wang X, Zhao H, Liu Z 2010 Opt. Lett. 35 1043

    [31]

    Beland R R 1995 Proc. SPIE 2375 6

    [32]

    Stribling B E, Welsh B M, Roggemann M C 1995 Proc. SPIE 2471 181

    [33]

    Enguehard S, Hatfield B 1995 Prog. Quant. Electron. 19 239

    [34]

    Tyson R K 1982 Appl. Opt. 21 787

  • [1] Ma Rui-Rui, Chen Liu, Qiu Zhi-Yong. Theoretical studies of low-frequency shear Alfvén waves in reversed shear tokamak plasmas. Acta Physica Sinica, 2023, 72(21): 215207. doi: 10.7498/aps.72.20230255
    [2] Gao Zhao-Lin, Liu Rui-Hua, Wen Kai, Ma Ying, Li Jian-Lang, Gao Peng. Phase/fluorescence dual-mode microscopy imaging based on structured light illumination. Acta Physica Sinica, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [3] Zhang Jian-Zhu, Zhang Fei-Zhou, Su Hua, Hu Peng, Xie Xiao-Gang, Luo Wen. Analysis of beam deviation induced by thermal blooming effect when high-energy laser propagating up in atmosphere. Acta Physica Sinica, 2021, 70(24): 244202. doi: 10.7498/aps.70.20211138
    [4] Wang Peng, Xue Yun, Lou Zhi-Mei. Dynamic instability of super-long elastic rod in viscous fluid. Acta Physica Sinica, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [5] Liang Mei-Yan, Zhang Cun-Lin. Improvement in the range resolution of THz radar using phase compensation algorithm. Acta Physica Sinica, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [6] Zhang Yue, Zhuo Qing-Qing, Liu Hong-Xia, Ma Xiao-Hua, Hao Yue. Flat-roof of dynamic equilibrium phenomenon in static negative biase temperature instability effect on power metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2013, 62(16): 167305. doi: 10.7498/aps.62.167305
    [7] Du Hui, Wei Gang, Zhang Yuan-Ming, Xu Xiao-Hui. Experimental investigations on the propagation characteristics of internal solitary waves over a gentle slope. Acta Physica Sinica, 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [8] Zhang Heng, Duan Wen-Shan. The modulational instability of the solition wave in two-dimensional Bose-Einstein condensates. Acta Physica Sinica, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [9] Su Rong-Tao, Zhou Pu, Wang Xiao-Lin, Ji Xiang, Xu Xiao-Jun. Influence of temporal error with different pulse shapes on coherent beam combination system. Acta Physica Sinica, 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [10] Wei Qi, E Wen-Ji. Thermodynamic analyses of dewetting instability in thin films. Acta Physica Sinica, 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [11] Wang Guang-Chang, Zheng Zhi-Jian, Gu Yu-Qiu, Chen Tao, Zhang Ting. Study of transport of hot electrons in solid targets using transition radiation. Acta Physica Sinica, 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [12] Huang Yin-Bo, Wang Ying-Jian. Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere. Acta Physica Sinica, 2006, 55(12): 6715-6719. doi: 10.7498/aps.55.6715
    [13] Wei Xin-Hua, Zhou Guo-Cheng, Cao Jin-Bin, Li Liu-Yuan. Low-frequency electromagnetic instabilities in a collisionless current sheet:magnetohydrodynamic model. Acta Physica Sinica, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [14] Wang Shi-Yu, Guo Zhen, Fu Jun-Mei, Cai De-Fang, Wen Jian-Guo, Xue Hai-Zhong, Tang Ying-De. Heat-induced undulation in the distribution of diode-pumped solid-state laser. Acta Physica Sinica, 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [15] LIU JIN-YUAN, GONG YE, LI GUO-BING, MA TENG-CAI, ZHANG LIN. THE HELICAL INSTABILITY OF ARCS FOR LINEAR HEAT FLUX POTENTIAL MODEL IN AN AXIAL MAGNETIC FIELD. Acta Physica Sinica, 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
    [16] ZHANG JIA-TAI, NIE XIAO-BO, SU XIU-MIN. NUMERICAL SIMULATION STUDIES ON FILAMENTATION IN COHERENCE AND INCOHERENCE LASER. Acta Physica Sinica, 1994, 43(1): 52-63. doi: 10.7498/aps.43.52
    [17] YANG GUO-JIAN, HU GANG. INSTABILITY ANALYSIS OF LASER WITH AN INJECTED SIGNAL. Acta Physica Sinica, 1990, 39(12): 1900-1907. doi: 10.7498/aps.39.1900
    [18] ZHANG LI-GEN, CHEN NAN-PENG, BA EN-XU. EFFECTS OF LIGHT FEEDBACK ON CO2 LASER INSTABILITIES. Acta Physica Sinica, 1990, 39(2): 183-189. doi: 10.7498/aps.39.183
    [19] WANG SHOU-WU, WANG QI-MING, LIN SHI-MING. STUDY OF THE INSTABILITY OF BISTABLE INJECTION LASERS. Acta Physica Sinica, 1986, 35(8): 1095-1101. doi: 10.7498/aps.35.1095
    [20] WANG XIN-YI, LIN LEI. ELECTROHYDRODYNAMIC INSTABILITIES OF NEMATIC LIQUID CRYSTALS——EFFECT OF AN INCLINED ELECTRIC FIELD. Acta Physica Sinica, 1983, 32(12): 1565-1573. doi: 10.7498/aps.32.1565
Metrics
  • Abstract views:  6089
  • PDF Downloads:  152
  • Cited By: 0
Publishing process
  • Received Date:  16 May 2017
  • Accepted Date:  24 July 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map