搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏性流体中超细长弹性杆的动力学不稳定性

王鹏 薛纭 楼智美

引用本文:
Citation:

黏性流体中超细长弹性杆的动力学不稳定性

王鹏, 薛纭, 楼智美

Dynamic instability of super-long elastic rod in viscous fluid

Wang Peng, Xue Yun, Lou Zhi-Mei
PDF
导出引用
  • 基于坐标基矢摄动的方法研究了黏性流体中超细长弹性杆动力学稳定性判据与失稳后的模态选择,推导出了黏性介质中超细长弹性杆Kirchoff动力学方程的一阶摄动表示,即线性的二阶偏微分方程组.以平面扭转DNA环为例,说明了以上结果的应用,得到了平面扭转DNA环的稳定性判据及其稳定的临界区域,讨论了其失稳后的模态选择及黏性阻力对其的影响.
    The external environment affects the structural form of biological system. Many biological systems are surrounded by cell solutions, such as DNA and bacteria. The solution will offer a viscous resistance as the biological system moves in the viscous fluid. How does the viscous resistance affect the stability of biological system and what mode will be selected after instability? In this paper, we establish a super-long elastic rod model which contains the viscous resistance to model this phenomenon. The stability and instability of the super-long elastic rod in the viscous fluid are studied. The dynamic equations of motion of the super-long elastic rod in viscous fluid are given based on the Kirchhoff dynamic analogy. Then a coordinate basis vector perturbation scheme is reviewed. According to the new perturbation method, we obtain the first order perturbation representation of super-long elastic rod dynamic equation in the viscous fluid, which is a group of the second order linear partial differential equations. The stability of the super-long elastic rod can be determined by analyzing the solutions of the second order linear partial differential equations. The results are applied to a twisted planar DNA ring. The stability criterion of the twisted planar DNA ring and its critical region are obtained. The results show that the viscous resistance has no effect on the stability of super-long elastic rod dynamics, but affects its instability. The mode selection and the influence of the viscous resistance on the instability of DNA ring are discussed. The amplitude of the elastic loop becomes smaller under the influence of the viscous resistance, and a bifurcation occurs. The mode number of instability of DNA loop becomes bigger with the increase of viscous resistance.
      通信作者: 王鹏, sdpengwang@163.com
    • 基金项目: 国家自然科学基金(批准号:11262019,11372195,11472177)资助的课题.
      Corresponding author: Wang Peng, sdpengwang@163.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 11262019, 11372195, 11472177).
    [1]

    Beham C J 1977 Proc. Natl. Acad. Sci. USA 74 2397

    [2]

    Le Bret M 1978 Biopolymers 17 1939

    [3]

    Travers A A, Thompson J M T 2004 Phil. Trans. R. Soc. Lond. A 362 1265

    [4]

    Benham C J, Mielke S P 2005 Annu. Rev. Biomed. Eng. 7 21

    [5]

    Shi Y M, Hearst J E 1994 J. Chem. Phys. 101 5186

    [6]

    Zhou H J, Ouyang Z C 1999 J. Chem. Phys. 110 1247

    [7]

    Xue Y, Liu Y Z, Chen L Q 2004 Chin. Phys. 13 794

    [8]

    Wang P, Xue Y 2016 Nonlinear Dyn. 83 1815

    [9]

    Liu Y Z 2006 Nonlinear Mechanics of Thin Elastic Rod-Theoretical Basis of Mechanical Model of DNA (Beijing: Tsinghua Press Springer) p85 (in Chinese) [刘延柱 2006 弹性细杆非线性力学-DNA力学模型的理论基础 (北京: 清华大学出版社 Springer) 第85页]

    [10]

    Bustamante C, Bryant Z 2003 Nature 421 423

    [11]

    Tobias I, Swigon D, Coleman B D 2000 Phys. Rev. E 61 747

    [12]

    Manning R S, Bluman G B 2005 Proc. R. Soc. Lond. A 461 2423

    [13]

    Liu Y Z, Zu J W 2004 Acta Mech. 164 29

    [14]

    Liu Y Z, Sheng L W 2007 Acta Phys. Sin. 56 2305 (in Chinese) [刘延柱, 盛立伟 2007 56 2305]

    [15]

    Xue Y, Liu Y Z 2009 Acta Phys. Sin. 58 6737 (in Chinese) [薛纭, 刘延柱 2009 58 6737]

    [16]

    Xue Y, Chen L Q, Liu Y Z 2004 Acta Phys. Sin. 53 4029 (in Chinese) [薛纭, 陈立群, 刘延柱 2004 53 4029]

    [17]

    Goriely A, Tabor M 1997 Physica D 105 20

    [18]

    Goriely A, Tabor M 1996 Phys. Rev. Lett. 77 3537

    [19]

    Moulton D E, Lessinnes T, Goriely A 2013 J. Mech. Phys. Solids 61 398

    [20]

    Klapper I 1996 J. Comput. Phys. 125 325

    [21]

    Goldstein R E, Powers T R, Wiggins C H 1998 Phys. Rev. Lett. 80 5232

    [22]

    Wolgemuth C W, Powers T R, Goldstein R E 2000 Phys. Rev. Lett. 84 1623

    [23]

    Liu Y Z, Sheng L W 2007 Chin. Phys. 16 0891

    [24]

    Keller J B, Rubinow S I 1976 J. Fluid Mech. 75 705

    [25]

    Manning R S, Maddocks J H, Kahn J D 1996 J. Chem. Phys. 105 5626

    [26]

    Kehrbaum S 1997 Ph. D. Dissertation (Maryland: University of Maryland, College Park, USA)

    [27]

    Hagerman P 1988 Rev. Biophys. Chem. 17 265

    [28]

    Schlick T 1995 Curr. Opinion Struct. Biol. 5 245

    [29]

    Zajac E E 1962 Trans. ASME. J. Appl. Mech. 29 136

  • [1]

    Beham C J 1977 Proc. Natl. Acad. Sci. USA 74 2397

    [2]

    Le Bret M 1978 Biopolymers 17 1939

    [3]

    Travers A A, Thompson J M T 2004 Phil. Trans. R. Soc. Lond. A 362 1265

    [4]

    Benham C J, Mielke S P 2005 Annu. Rev. Biomed. Eng. 7 21

    [5]

    Shi Y M, Hearst J E 1994 J. Chem. Phys. 101 5186

    [6]

    Zhou H J, Ouyang Z C 1999 J. Chem. Phys. 110 1247

    [7]

    Xue Y, Liu Y Z, Chen L Q 2004 Chin. Phys. 13 794

    [8]

    Wang P, Xue Y 2016 Nonlinear Dyn. 83 1815

    [9]

    Liu Y Z 2006 Nonlinear Mechanics of Thin Elastic Rod-Theoretical Basis of Mechanical Model of DNA (Beijing: Tsinghua Press Springer) p85 (in Chinese) [刘延柱 2006 弹性细杆非线性力学-DNA力学模型的理论基础 (北京: 清华大学出版社 Springer) 第85页]

    [10]

    Bustamante C, Bryant Z 2003 Nature 421 423

    [11]

    Tobias I, Swigon D, Coleman B D 2000 Phys. Rev. E 61 747

    [12]

    Manning R S, Bluman G B 2005 Proc. R. Soc. Lond. A 461 2423

    [13]

    Liu Y Z, Zu J W 2004 Acta Mech. 164 29

    [14]

    Liu Y Z, Sheng L W 2007 Acta Phys. Sin. 56 2305 (in Chinese) [刘延柱, 盛立伟 2007 56 2305]

    [15]

    Xue Y, Liu Y Z 2009 Acta Phys. Sin. 58 6737 (in Chinese) [薛纭, 刘延柱 2009 58 6737]

    [16]

    Xue Y, Chen L Q, Liu Y Z 2004 Acta Phys. Sin. 53 4029 (in Chinese) [薛纭, 陈立群, 刘延柱 2004 53 4029]

    [17]

    Goriely A, Tabor M 1997 Physica D 105 20

    [18]

    Goriely A, Tabor M 1996 Phys. Rev. Lett. 77 3537

    [19]

    Moulton D E, Lessinnes T, Goriely A 2013 J. Mech. Phys. Solids 61 398

    [20]

    Klapper I 1996 J. Comput. Phys. 125 325

    [21]

    Goldstein R E, Powers T R, Wiggins C H 1998 Phys. Rev. Lett. 80 5232

    [22]

    Wolgemuth C W, Powers T R, Goldstein R E 2000 Phys. Rev. Lett. 84 1623

    [23]

    Liu Y Z, Sheng L W 2007 Chin. Phys. 16 0891

    [24]

    Keller J B, Rubinow S I 1976 J. Fluid Mech. 75 705

    [25]

    Manning R S, Maddocks J H, Kahn J D 1996 J. Chem. Phys. 105 5626

    [26]

    Kehrbaum S 1997 Ph. D. Dissertation (Maryland: University of Maryland, College Park, USA)

    [27]

    Hagerman P 1988 Rev. Biophys. Chem. 17 265

    [28]

    Schlick T 1995 Curr. Opinion Struct. Biol. 5 245

    [29]

    Zajac E E 1962 Trans. ASME. J. Appl. Mech. 29 136

  • [1] 刘泰齐, 陈少永, 牟茂淋, 唐昌建. 超电阻对气球模线性不稳定性影响的理论研究.  , 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [2] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [3] 马瑞瑞, 陈骝, 仇志勇. 反磁剪切托卡马克等离子体中低频剪切阿尔芬波的理论研究.  , 2023, 72(21): 215207. doi: 10.7498/aps.72.20230255
    [4] 彭凡, 张秀梅, 刘琳, 王秀明. 非均匀饱含黏性流体孔隙介质中声波传播及井孔声场分析.  , 2023, 72(5): 050401. doi: 10.7498/aps.72.20221858
    [5] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究.  , 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [6] 李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟.  , 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [7] 张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭. Non-Kolmogorov湍流大气中小尺度热晕效应线性理论.  , 2017, 66(24): 244210. doi: 10.7498/aps.66.244210
    [8] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟.  , 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [9] 杜辉, 魏岗, 张原铭, 徐小辉. 内孤立波沿缓坡地形传播特性的实验研究.  , 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [10] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性.  , 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [11] 袁永腾, 郝轶聃, 侯立飞, 涂绍勇, 邓博, 胡昕, 易荣清, 曹柱荣, 江少恩, 刘慎业, 丁永坤, 缪文勇. 流体力学不稳定性增长测量方法研究.  , 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [12] 魏琪, 鄂文汲. 薄膜去湿不稳定性的热力学分析.  , 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [13] 王立锋, 叶文华, 范征锋, 孙彦乾, 郑炳松, 李英骏. 二维可压缩流体Kelvin-Helmholtz不稳定性.  , 2009, 58(9): 6381-6386. doi: 10.7498/aps.58.6381
    [14] 崔建新, 高海波, 洪文学. 超细长弹性杆的Mei对称性及其Noether守恒量.  , 2009, 58(11): 7426-7430. doi: 10.7498/aps.58.7426
    [15] 王光昶, 郑志坚, 谷渝秋, 陈 涛, 张 婷. 利用渡越辐射研究超热电子在固体靶中的输运过程.  , 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [16] 薛 纭, 刘延柱, 陈立群. Kirchhoff弹性杆动力学建模的分析力学方法.  , 2006, 55(8): 3845-3851. doi: 10.7498/aps.55.3845
    [17] 魏新华, 周国成, 曹晋滨, 李柳元. 无碰撞电流片低频电磁模不稳定性:MHD模型.  , 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [18] 薛 纭, 陈立群, 刘延柱. Kirchhoff方程的相对常值特解及其Lyapunov稳定性.  , 2004, 53(12): 4029-4036. doi: 10.7498/aps.53.4029
    [19] 马腾才, 宫野. 电流非单调分布时的电阻流体不稳定性.  , 1984, 33(8): 1112-1119. doi: 10.7498/aps.33.1112
    [20] 王心宜, 林磊. 向列相液晶电流体不稳定性——偏置电场效应.  , 1983, 32(12): 1565-1573. doi: 10.7498/aps.32.1565
计量
  • 文章访问数:  6792
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 修回日期:  2016-12-18
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map