-
A new contactless technique called Lorentz force particle analyzer (LFPA) with an array probe for detecting the flaws in metallic material is presented in this paper. Based on the principle of LFPA, the shape and size of the flaw or the direction of the crack can be obtained by analyzing the pulses of the force acting on the permanent magnet. In the LFPA system, the small Lorentz force on the magnet is measured by a laser-cantilever system with high sensitivity, which operates in a similar principle to that of an atomic force microscope. The traditional displacement detecting method in the LFPA is not suitable for the array probe presented in this paper due to its complex structure. Therefore, speckle pattern interferometry is introduced into the LPFA. The speckle pattern interferometry can measure not only the out-of-plane displacement of the multiple cantilever in the array probe, or of slopes of deformation, but also the in-plane displacement. Those advantages make the speckle pattern interferometry a useful tool in the LFPA for analysing the shapes of the flaws and the directions of the cracks. In this paper, a Michelson-type shear of graphic setup with enlarged angle of view is built to measure the displacement of the cantilever which is deformed by the flaws in the sample. Four frames of shear under several grams before and after the deformation are captured and recorded by a digital camera. The phase difference is processed for calculating the displacement with the software which is designed for the LFPA. A full-field measurement of the cantilever displacement is achieved and the relationship between the phase difference and the volume of the flaws is also obtained successfully. The utilization of the speckle pattern interferometry technique in the LFPA leads to the invention of a new real-time, online, in-situ contactless technique of detecting the shapes of the internal flaws and the directions of the cracks.
-
Keywords:
- array /
- Lorentz force /
- speckle pattern interferometry /
- nondestructive detection
[1] Sun M J, Liu T, Cheng X Z, Chen D Y, Yan F G, Feng N Z 2016 Acta Phys. Sin. 65 167802 (in Chinese)[孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章2016 65 167802]
[2] Sun M J, Cheng X Z, Wang Y, Zhang X, Shen Y, Feng N Z 2016 Acta Phys. Sin. 65 038105 (in Chinese)[孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章2016 65 038105]
[3] Wu D H, Liu Z T, Wang X H, Su L X 2017 Acta Phys. Sin. 66 048102 (in Chinese)[吴德会, 刘志天, 王晓红, 苏令锌2017 66 048102]
[4] Liu L, Meng G 2006 Nondestruct.Test. 28 28 (in Chinese)[刘龙, 孟光2006无损检测28 28]
[5] GaoY, Fu S H, Cai Y L, Cheng T, Zhang Q C 2014 Acta Phys. Sin. 63 066201 (in Chinese)[高越, 符师桦, 蔡玉龙, 程腾, 张青川2014 63 066201]
[6] Wang X D, Andr T, Moreau R, Tan Y Q, Dai S J, Tao Z 2016 J. Appl. Phys. 120 188
[7] Moreau R, Tao Z, Wang X D 2016 Appl. Phys. Lett. 109 014903
[8] Li T, Wang Y L, Zhang J, Shi Y S 2015 Appl. Opt. 54 306
[9] Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese)[王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国2013 62 064206]
[10] Shi Y S, Wang Y L, Xiao J, Yang Y H, Zhang J J 2011 Acta Phys. Sin. 60 034202 (in Chinese)[史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟2011 60 034202]
[11] Shi Y S, Li T, Wang Y L, Gao Q K 2013 Opt. Lett. 38 1425
[12] Wu X Y, Yu Y J, L L J 2013 Laser Optoelectr. Prog. 50 18 (in Chinese)[伍小燕, 于瀛洁, 吕丽军2013激光与光电子学进展50 18]
[13] Wu X P, He S P, Li Z C 1980 Acta Phys. Sin. 29 1142 (in Chinese)[伍小平, 何世平, 李志超1980 29 1142]
[14] Wang X D, Yurii K, Andr T 2012 Measur. Sci. Technol. 23 045005
[15] Tan Y Q, Wang X D, Moreau R 2015 Measur. Sci. Technol. 26 035602
[16] Thess A, Votyakov E, Knaepen B, Zikanov O 2007 New J. Phys. 9 299
[17] Thess A, Votyakov E, Kolesnikov Y 2006 Phys. Rev. Lett. 96 164501
[18] Wu S J, He X, Yang L 2011 Appl. Opt. 50 3789
[19] Wu S J, Zhu L Q, Pan S Y, Yang L X 2016 Opt. Lett. 41 1050
[20] Wu S J, Zhu L Q, Feng Q B, Yang L X 2012 Opt. Lasers Engineer. 50 1260
[21] Li T, Shi Y S 2015 Opt. Express 23 21384
[22] Li T, Wang Y L, Zhang J, Shi Y S 2015 Appl. Opt. 54 306
[23] Li T, Shi Y S 2016 J. Opt. 18 035702
-
[1] Sun M J, Liu T, Cheng X Z, Chen D Y, Yan F G, Feng N Z 2016 Acta Phys. Sin. 65 167802 (in Chinese)[孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章2016 65 167802]
[2] Sun M J, Cheng X Z, Wang Y, Zhang X, Shen Y, Feng N Z 2016 Acta Phys. Sin. 65 038105 (in Chinese)[孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章2016 65 038105]
[3] Wu D H, Liu Z T, Wang X H, Su L X 2017 Acta Phys. Sin. 66 048102 (in Chinese)[吴德会, 刘志天, 王晓红, 苏令锌2017 66 048102]
[4] Liu L, Meng G 2006 Nondestruct.Test. 28 28 (in Chinese)[刘龙, 孟光2006无损检测28 28]
[5] GaoY, Fu S H, Cai Y L, Cheng T, Zhang Q C 2014 Acta Phys. Sin. 63 066201 (in Chinese)[高越, 符师桦, 蔡玉龙, 程腾, 张青川2014 63 066201]
[6] Wang X D, Andr T, Moreau R, Tan Y Q, Dai S J, Tao Z 2016 J. Appl. Phys. 120 188
[7] Moreau R, Tao Z, Wang X D 2016 Appl. Phys. Lett. 109 014903
[8] Li T, Wang Y L, Zhang J, Shi Y S 2015 Appl. Opt. 54 306
[9] Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese)[王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国2013 62 064206]
[10] Shi Y S, Wang Y L, Xiao J, Yang Y H, Zhang J J 2011 Acta Phys. Sin. 60 034202 (in Chinese)[史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟2011 60 034202]
[11] Shi Y S, Li T, Wang Y L, Gao Q K 2013 Opt. Lett. 38 1425
[12] Wu X Y, Yu Y J, L L J 2013 Laser Optoelectr. Prog. 50 18 (in Chinese)[伍小燕, 于瀛洁, 吕丽军2013激光与光电子学进展50 18]
[13] Wu X P, He S P, Li Z C 1980 Acta Phys. Sin. 29 1142 (in Chinese)[伍小平, 何世平, 李志超1980 29 1142]
[14] Wang X D, Yurii K, Andr T 2012 Measur. Sci. Technol. 23 045005
[15] Tan Y Q, Wang X D, Moreau R 2015 Measur. Sci. Technol. 26 035602
[16] Thess A, Votyakov E, Knaepen B, Zikanov O 2007 New J. Phys. 9 299
[17] Thess A, Votyakov E, Kolesnikov Y 2006 Phys. Rev. Lett. 96 164501
[18] Wu S J, He X, Yang L 2011 Appl. Opt. 50 3789
[19] Wu S J, Zhu L Q, Pan S Y, Yang L X 2016 Opt. Lett. 41 1050
[20] Wu S J, Zhu L Q, Feng Q B, Yang L X 2012 Opt. Lasers Engineer. 50 1260
[21] Li T, Shi Y S 2015 Opt. Express 23 21384
[22] Li T, Wang Y L, Zhang J, Shi Y S 2015 Appl. Opt. 54 306
[23] Li T, Shi Y S 2016 J. Opt. 18 035702
Catalog
Metrics
- Abstract views: 5904
- PDF Downloads: 211
- Cited By: 0