搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于本征荧光的生物气溶胶测量激光雷达性能

饶志敏 华灯鑫 何廷尧 乐静

引用本文:
Citation:

基于本征荧光的生物气溶胶测量激光雷达性能

饶志敏, 华灯鑫, 何廷尧, 乐静

Research and analysis on lidar performance with intrinsic fluorescence biological aerosol measurements

Rao Zhi-Min, Hua Deng-Xin, He Ting-Yao, Le Jing
PDF
导出引用
  • 为研究本征荧光对生物气溶胶粒子探测精度的影响,本文在阐述生物气溶胶荧光光谱信号探测原理的基础上,设计了一台紫外激光诱导荧光雷达.该雷达选用波长为266 nm的四倍频固体激光器作为激励光源,基于本征荧光波长、探测距离等主要参数,对生物气溶胶荧光光谱回波信号的信噪比及粒子浓度的最小分辨率进行数值仿真分析.仿真结果表明,在探测误差小于10%的情况下,距离为1.5 km时,系统对生物气溶胶荧光波长的有效探测范围为300–800 nm;而在距离为2.1 km时,荧光波长的有效探测范围为300–310 nm.此外,在探测距离定义为0.1 km,荧光波长为350和600 nm时,系统对物气溶胶粒子浓度的最小分辨率分别为2个颗粒/L和4个颗粒/L,最小分辨率的差值为2个颗粒/L.仿真结果有利于了解荧光波长变动时激光雷达系统的探测准确度,进而实现大气生物气溶胶更加有效的探测.
    Biological aerosols which could cause diseases of human beings, animals and plants, are living particles suspended in the atmosphere. Ultraviolet laser induced fluorescence has been developed as a standard technique used to discriminate between biological and non-biological particles. As an effective tool of remote sensing, fluorescence lidar is capable of detecting concentration of biological aerosols with high spatial and temporal resolutions. Intrinsic fluorescence, one of the most important characteristics of biological aerosols, has quite a large effect on the performances of fluorescence lidar. To investigate the effects of intrinsic fluorescence on biological aerosols, we design an ultraviolet laser induced fluorescence lidar at an excited wavelength of 266 nm, with a repetition rate of 10 Hz. Fluorescence signals are collected by a Cassegrain telescope with a diameter of 254 mm, in which fluorescence spectra of 300-800 nm are mainly considered. A spectrograph and a multichannel photomultiplier tube (PMT) array detector are employed to achieve the fine separation and highefficiency detection of fluorescence signals. According to the present configuration, we perform a series of simulations to estimate the measurement range and the concentration resolution of biological aerosols, with a certain pulse energy. With a relative error less than 10%, theoretical analysis shows that designed fluorescence lidar is able to detect the biological aerosols within a range of 1.5 km at a concentration of 1000 particles·L-1. When the detection distance enlarges to 2.1 km, detectable wavelength range is limited to 300-310 nm. In addition, the lidar is capable of identifying minimum concentrations of biological aerosols with 2 particles·L-1 and 4 particles·L-1 at fluorescence wavelengths of 350 nm and 600 nm, respectively, where the induced pulse energy is set to be 60 mJ and detected range 0.1 km. With setting energies of 40 mJ and 20 mJ, minimum concentrations of biological aerosols decrease to 3 particles·L-1 and 6 particles·L-1, respectively, at a fluorescence wavelength of 350 nm. The relative error of minimum concentration resolution is about 2 particles·L-1, increasing rapidly with range. For a fluorescence wavelength of 600 nm, both the minimum concentration and the relative error show relatively high values, 5 particles·L-1 at 40 mJ and 10 particles·L-1 at 20 mJ, where the relative errors are found to be 2 particles·L-1 and 4 particles·L-1, respectively. The results prove that a shorter intrinsic fluorescence wavelength has a better effect on biological aerosol measurement. We believe that a proper intrinsic fluorescence wavelength will further improve the detection accuracy of biological aerosols.
      通信作者: 华灯鑫, dengxinhua@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275185,41405028)和陕西省自然科学基金(批准号:2015JQ4100)资助的课题.
      Corresponding author: Hua Deng-Xin, dengxinhua@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275185, 41405028) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JQ4100).
    [1]

    Xu A, Xiong C, Zhang P, Liao X Q, Yang W, Zhao Y K, Huang H J 2013 Acta Optica Sinica 33 130 (in Chinese)[徐傲, 熊超, 张佩, 廖小情, 杨巍, 赵勇凯, 黄惠杰2013光学学报33 130]

    [2]

    Després V R, Huffman J A, Burrows S M, Hoose C, Safatov A S, Buryak G, Nowoisky J F, Elbert W, Andreae M O, Poschl U, Jaenicke R 2012 Tellus B 64 15598

    [3]

    Heidi B, Heinrich G, Regina H, Anne K, Georg R, Franziska Z, Hans P 2003 J. Geophys. Res. 108 1919

    [4]

    Franc G D, Demott P J 1998 J. Appl. Meteorol. 37 1293

    [5]

    Sun J, Ariya P A 2006 Atmos. Environ. 40 795

    [6]

    Pan Y L, Hill S C, Pinnick R G, Huang H, Bottiger J R, Chang R K 2010 Opt. Express 18 12436

    [7]

    Gruber S, Matthias-Maser S, Jaenicke R 1997 J. Aerosol Sci. 28 S595

    [8]

    White C C, Kenny C M, Jennings S G 1999 J. Aerosol Sci. 30 809

    [9]

    Artaxo P, Maenhaut W, Storms H, VanGrieken R 1990 J. Geophys. Res. 95 16971

    [10]

    Artaxo P, Storms H, Bruynseels F, Grieken R V, Maenhaut W 1988 J. Geophys. Res. 93 1605

    [11]

    Cai S Y, Zhang P, Zhu L L, Xie C K, Sun Z Y, Cheng W L, Zhao Y K, Huang H J 2012 Acta Optica Sinica 32 119 (in Chinese)[蔡舒窈, 张佩, 朱玲琳, 谢承科, 孙征宇, 程伟林, 赵勇凯, 黄惠杰2012光学学报32 119]

    [12]

    Wan W B, Hua D X, Le J, Yan Z, Zhou C Y 2015 Acta Phys. Sin. 64 190702 (in Chinese)[万文博, 华灯鑫, 乐静, 闫哲, 周春燕2015 64 190702]

    [13]

    Buteau S, Simard J R, Roy G 2010 Proceedings of SPIEThe International Society for Optical Engineering Toulous, France, September 20-23, 2010 p7838

    [14]

    Ge L L, Ding L, Yan J, Wang Y P, Zheng H Y, Fang L 2013 J. At. Mol. Phys. 30 125 (in Chinese)[葛琳琳, 丁蕾, 闫静, 王颖萍, 郑海洋, 方黎2013原子与分子 30 125]

    [15]

    Fang W H, Li Z W, Li Z L, Qu G N, Ouyang S L, Men Z W 2012 Acta Phys. Sin. 61 153301 (in Chinese)[房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟2012 61 153301]

    [16]

    Øystein F, Rustad G, Skogan G 2012 Biomed. Opt. Express 3 2964

    [17]

    Feng C X, Huang L H, Zhou G C, Han J, Zeng A J, Zhao Y K, Huang H J 2010 Chinese J. Lasers 37 2592 (in Chinese)[冯春霞, 黄立华, 周光超, 韩洁, 曾爱军, 赵永凯, 黄惠杰2010中国激光37 2592]

    [18]

    Change G Q, Song C Y, Wang L 2010 Acta Opt. Sin. 12 s100503 (in Chinese)[常冠钦, 宋存义, 汪莉2010光学学报30 s100503]

    [19]

    Pinnick R G, Hill S C, Niles S, Garvey D M, Pan Y L, Holler S, Chang R K 1999 Field Anal. Chem. Technol. 3 221

    [20]

    Pan Y L, Huang H, Chang R K 2012 J. Quant. Spectrosc. Radiat. Transfer 113 2213

    [21]

    Pan Y L 2015 J. Quant. Spectrosc. Radiat. Transfer 150 12

    [22]

    Megie G 1985 Eos, Trans. Am. Geophys. Union 66 686

    [23]

    Li S S, Zhang Z H, Zhao W, Li Z K, Huang S L 2015 Chin. Phys. B 24 95

    [24]

    Wojtanowski J, Zygmunt M, Muzal M, Knysak P, Mlodzianko A, Gawlikowski A. Traczyk M 2015 Opt. Laser Technol. 67 25

    [25]

    Zou B F, Zhang Y C, Hu S X 2008 Laser Technol. 32 287 (in Chinese)[邹炳芳, 张寅超, 胡顺星2008激光技术32 287]

    [26]

    Joshi D, Kumar D, Maini A K, Sharma R C 2013 Spectrochim. Acta A 112 446

    [27]

    Nakajima T Y, Imai T, Uchino O, Nagai T 1999 Appl. Opt. 38 5218

  • [1]

    Xu A, Xiong C, Zhang P, Liao X Q, Yang W, Zhao Y K, Huang H J 2013 Acta Optica Sinica 33 130 (in Chinese)[徐傲, 熊超, 张佩, 廖小情, 杨巍, 赵勇凯, 黄惠杰2013光学学报33 130]

    [2]

    Després V R, Huffman J A, Burrows S M, Hoose C, Safatov A S, Buryak G, Nowoisky J F, Elbert W, Andreae M O, Poschl U, Jaenicke R 2012 Tellus B 64 15598

    [3]

    Heidi B, Heinrich G, Regina H, Anne K, Georg R, Franziska Z, Hans P 2003 J. Geophys. Res. 108 1919

    [4]

    Franc G D, Demott P J 1998 J. Appl. Meteorol. 37 1293

    [5]

    Sun J, Ariya P A 2006 Atmos. Environ. 40 795

    [6]

    Pan Y L, Hill S C, Pinnick R G, Huang H, Bottiger J R, Chang R K 2010 Opt. Express 18 12436

    [7]

    Gruber S, Matthias-Maser S, Jaenicke R 1997 J. Aerosol Sci. 28 S595

    [8]

    White C C, Kenny C M, Jennings S G 1999 J. Aerosol Sci. 30 809

    [9]

    Artaxo P, Maenhaut W, Storms H, VanGrieken R 1990 J. Geophys. Res. 95 16971

    [10]

    Artaxo P, Storms H, Bruynseels F, Grieken R V, Maenhaut W 1988 J. Geophys. Res. 93 1605

    [11]

    Cai S Y, Zhang P, Zhu L L, Xie C K, Sun Z Y, Cheng W L, Zhao Y K, Huang H J 2012 Acta Optica Sinica 32 119 (in Chinese)[蔡舒窈, 张佩, 朱玲琳, 谢承科, 孙征宇, 程伟林, 赵勇凯, 黄惠杰2012光学学报32 119]

    [12]

    Wan W B, Hua D X, Le J, Yan Z, Zhou C Y 2015 Acta Phys. Sin. 64 190702 (in Chinese)[万文博, 华灯鑫, 乐静, 闫哲, 周春燕2015 64 190702]

    [13]

    Buteau S, Simard J R, Roy G 2010 Proceedings of SPIEThe International Society for Optical Engineering Toulous, France, September 20-23, 2010 p7838

    [14]

    Ge L L, Ding L, Yan J, Wang Y P, Zheng H Y, Fang L 2013 J. At. Mol. Phys. 30 125 (in Chinese)[葛琳琳, 丁蕾, 闫静, 王颖萍, 郑海洋, 方黎2013原子与分子 30 125]

    [15]

    Fang W H, Li Z W, Li Z L, Qu G N, Ouyang S L, Men Z W 2012 Acta Phys. Sin. 61 153301 (in Chinese)[房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟2012 61 153301]

    [16]

    Øystein F, Rustad G, Skogan G 2012 Biomed. Opt. Express 3 2964

    [17]

    Feng C X, Huang L H, Zhou G C, Han J, Zeng A J, Zhao Y K, Huang H J 2010 Chinese J. Lasers 37 2592 (in Chinese)[冯春霞, 黄立华, 周光超, 韩洁, 曾爱军, 赵永凯, 黄惠杰2010中国激光37 2592]

    [18]

    Change G Q, Song C Y, Wang L 2010 Acta Opt. Sin. 12 s100503 (in Chinese)[常冠钦, 宋存义, 汪莉2010光学学报30 s100503]

    [19]

    Pinnick R G, Hill S C, Niles S, Garvey D M, Pan Y L, Holler S, Chang R K 1999 Field Anal. Chem. Technol. 3 221

    [20]

    Pan Y L, Huang H, Chang R K 2012 J. Quant. Spectrosc. Radiat. Transfer 113 2213

    [21]

    Pan Y L 2015 J. Quant. Spectrosc. Radiat. Transfer 150 12

    [22]

    Megie G 1985 Eos, Trans. Am. Geophys. Union 66 686

    [23]

    Li S S, Zhang Z H, Zhao W, Li Z K, Huang S L 2015 Chin. Phys. B 24 95

    [24]

    Wojtanowski J, Zygmunt M, Muzal M, Knysak P, Mlodzianko A, Gawlikowski A. Traczyk M 2015 Opt. Laser Technol. 67 25

    [25]

    Zou B F, Zhang Y C, Hu S X 2008 Laser Technol. 32 287 (in Chinese)[邹炳芳, 张寅超, 胡顺星2008激光技术32 287]

    [26]

    Joshi D, Kumar D, Maini A K, Sharma R C 2013 Spectrochim. Acta A 112 446

    [27]

    Nakajima T Y, Imai T, Uchino O, Nagai T 1999 Appl. Opt. 38 5218

  • [1] 张鑫源, 胡以华, 谌诗洋, 方佳节, 王一程, 刘一凡, 韩飞. 公里级激光反射层析实验和碎片质心估计.  , 2022, 71(11): 114205. doi: 10.7498/aps.71.20220205
    [2] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比.  , 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [3] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析.  , 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [4] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法.  , 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [5] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真.  , 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [6] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析.  , 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [7] 冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽. 基于MODTRAN模型使用被动傅里叶变换红外光谱技术对生物气溶胶的探测研究.  , 2016, 65(1): 014210. doi: 10.7498/aps.65.014210
    [8] 张金碧, 丁蕾, 王颖萍, 郑海洋, 方黎. 利用近前向散射图样识别单粒子形状的理论研究.  , 2015, 64(5): 054202. doi: 10.7498/aps.64.054202
    [9] 朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威. 温度压强对CO2吸收光谱的影响.  , 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [10] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术.  , 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [11] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究.  , 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [12] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究.  , 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [13] 梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹. 基于尾流激光雷达的能量对消式大动态接收技术.  , 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [14] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进.  , 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [15] 连天虹, 王石语, 过振, 李兵斌, 蔡德芳, 文建国. 用于激光雷达的相干合成光束研究.  , 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [16] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法.  , 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [17] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差.  , 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶.  , 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达.  , 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [20] 郭冠军, 邵 芸. 激光散斑效应对激光雷达探测性能的影响.  , 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
计量
  • 文章访问数:  7931
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-19
  • 修回日期:  2016-06-18
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map