Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stimulated emission and laser behaviors of Nd3+/Yb3+ Co-doped phosphate glass fiber

Lin Zhi-Quan Yu Chun-Lei He Dong-Bing Feng Su-Ya Zhang Lei Chen Dan-Ping Hu Li-Li

Citation:

Stimulated emission and laser behaviors of Nd3+/Yb3+ Co-doped phosphate glass fiber

Lin Zhi-Quan, Yu Chun-Lei, He Dong-Bing, Feng Su-Ya, Zhang Lei, Chen Dan-Ping, Hu Li-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The energy transfer phenomenon between Nd3+ and Yb3+ generates the research interest in Nd3+/Yb3+ co-doping, because it provides a straight-forward way to combine the features of Nd3+ and Yb3+ to develop some potential applications,such as solar cells,high energy pulse and tunable lasers.Substantial research work has been conducted to study the spectroscopic properties of Nd3+/Yb3+ in different glasses,crystal and ceramic host materials.However,it is still not very clear about the laser properties of the Nd3+/Yb3+ co-doping system,especially the high rare-earth solubility phosphate glass.This work reports the stimulated emission and laser properties of an Nd3+/Yb3+ co-doped phosphate glass fiber under singly 970 nm and 808 nm LD pumping.The molar doping ratio of Nd3+:Yb3+ is 4:1.Using the free-space coupled method,the laser properties of the co-doped fiber under 970 nm pump are tested first in a laser cavity comprised of a butt-coupled dichroic mirror with high reflectivity (≥ 99.5%) and a cleaved fiber ended with~4.6% Fresnel reflectivity.It is found that with the increase of 970 nm pump power (P970) two discrete laser peaks and one peak located at 1053 nm with a larger threshold can be observed for fiber length equal to and less than 0.7 m.The 1053 nm laser is produced by Yb3+ → Nd3+ energy transfer,and its lasing threshold decreases with increasing fiber length in this length region.Then,the amplified spontaneous emission (ASE) spectra for fiber lengths of 0.35 m,0.9 m and 5.0 m under 970 nm pumping are tested by cutting 6° at the output port.The test results indicate that the Yb3+ → Nd3+ energy transfer has a modulation effect on fiber spectrum,and the modulation becomes more obvious for a longer fiber length.A two-fold promotion mechanism is suggested to explain the modulation effect:1) the reabsorption effect of Yb3+ leading to relatively lifetime prolongation increases the Yb3+ → Nd3+ energy transfer efficiency;2) the red-shifted oscillator laser wavelength leads to a larger emission cross section difference between Nd3+ and Yb3+.Besides,the measurement results in 0.35-m-long fiber also suggest that the 1053 nm laser in fiber laser test may be due to a fiber temperature raising effect during the increase of P970.The laser properties and ASE spectra of the fiber under 808 nm pumping have been studied in the same fiber test setup.However,the tested results are quite different from the 970 nm pumping case. Only one lasing peak at 1053 nm is detected,and it is found that the peak is not dependent on the 808 nm pump power (P808) nor the fiber length.To explain this phenomenon,one energy transfer model with taking into consideration the stimulated emission of Nd3+ is derived.According to this theoretical model,Nd3+ → Yb3+ energy transfer efficiency fast decreases with the increase of simulated emission intensity of Nd3+.This explanation is experimentally supported by a 0.05-m-long Nd3+/Yb3+ co-doped phosphate glass fiber with varying P808.Therefore,the adoption of Nd3+ to sensitize Yb3+ for developing some laser applications needs to consider the suppression effect of Nd3+ stimulated emission on Nd3+ → Yb3+ energy transfer.
      Corresponding author: Yu Chun-Lei, sdycllcy@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61405215, 61505232), the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the National High Technology Research and Development Program of China (Grant No. 2016YFB0402201).
    [1]

    Rivera-Lopez F, Babu P, Basavapoornima C, Jayasankar C K, Lavin V 2011 J. Appl. Phys. 109 123514

    [2]

    Pearson A D, Porto S P S 1964 Appl. Phys. Lett. 4 202

    [3]

    Petit V, Camy P, Doualan J L, Moncorgé R 2006 Appl. Phys. Lett. 88 051111

    [4]

    Reichel V, Moerl K W, Unger S, Jetschke S, Mueller H, Kirchhof J, Sandrock T, Harschack A, Liem A, Limpert J, Zellmer H, Tuennermann A 2005 Proceedings of the XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers Bellingham, America, March 23, 2005 p404

    [5]

    Jetschke S, Reichel V, Moerl K, Unger S, Roepke U, Mueller H 2005 Proceedings of Fiber Lasers Ⅱ:Technology, Systems, and Applications Bellingham, America, April 22, 2005 p59

    [6]

    Limpert J, Liem A, Zellmer H, Tnnermann A 2003 Electron. Lett. 39 645

    [7]

    Jaque D, Ramirez M O, Bausá L E, Solé J G, Cavalli E, Speghini A, Bettinelli M 2003 Phys. Rev. B 68 035118

    [8]

    Ramirez M O, Jaque D, Bausá L E, Martín I R, Lahoz F, Cavalli E, Speghini A, Bettinelli M 2005 J. Appl. Phys. 97 093510

    [9]

    Galagan B I, Denker B I, Dmitruk L N, Motsartov V V, Osiko V V, Sverchkov S E 1996 J. Quantum Elect. 26 99

    [10]

    Sugimoto N, Ohishi Y, Katoh Y, Tate A, Shimokozono M, Sudo S 1995 Appl. Phys. Lett. 67 582

    [11]

    de Sousa D F, Batalioto F, Bell M J V, Oliveira S L, Nunes L A O 2001 J. Appl. Phys. 90 3308

    [12]

    Lurin C, Parent C, Le Flem G, Hagenmuller P 1985 J. Phys. Chem. Solids 46 1083

    [13]

    Lurin C, Parent C, Le Flem G 1985 J. Less-Common Metals 112 91

    [14]

    George S A, Pucilowski A, Hayden, J S, Urruti E H 2016 Proceeding of Advanced Solid State Lasers Boston, Massachusetts, Oct. 31-Nov. 3, 2016 pJTu2A. 18

    [15]

    Lupei V, Lupei A, Ikesue A 2005 Appl. Phys. Lett. 86 111118

    [16]

    Lupei V, Lupei A, Gheorghe C, Hau S, Ikesue A 2009 Opt. Lett. 34 2141

    [17]

    Borrero-González L J, Nunes L A O 2012 J. Phys.:Condens. Matter 24 385501

    [18]

    Borrero-González L J, Nunes L A O, Bianchi G S, Astrath F B G, Baesso M L 2013 J. Appl. Phys. 114 013103

    [19]

    Yu D C, Zhang Q Y 2013 Sci. China:Chem. 43 1431(in Chinese)[禹德朝, 张勤远2013中国科学:化学43 1431]

    [20]

    Jia Z T, Arcangeli A, Tao X T, Zhang J, Dong C M, Jiang M H, Bonelli L, Tonelli M 2009 J. Appl. Phys. 105 083113

    [21]

    Sontakke A D, Biswas K, Sen R, Annapurna K 2010 J. Opt. Soc. Am. B 27 2750

    [22]

    Chen S C, Mao S, Dai F M 1984 Acta Phys. Sin. 33 515 (in Chinese)[陈述春, 茅森, 戴凤妹1984 33 515]

    [23]

    Jaque D, García Solé J, Macalik L, Hanuza J, Majchrowski A 2005 Appl. Phys. Lett. 86 011920

    [24]

    Jaque D, Solé J G, Speghini A, Bettinelli M, Cavalli E, Ródenas A 2006 Phys. Rev. B 74 035106

    [25]

    Xu W, Zhao H, Zhang Z G, Cao W W 2013 Sens. Actuator B:Chem. 178 520

    [26]

    Lin Z Q, Yu C L, He D B, Feng S Y, Chen D P, Hu L L 2016 IEEE Photon. Tech. Lett. 28 2673

    [27]

    Lou L R, Yin M, Li Q T 2014 Fundamentals of Luminescence Physics:Optical Transition Processes in Solids (Hefei:Press of University of Science and Technology of China) p152(in Chinese)[楼立人, 尹民, 李清庭2014发光物理基础:固体光跃迁过程(合肥:中国科学技术大学出版社)第152页]

    [28]

    George S, Carlie N, Pucilowski S, Hayden J 2014 US Patent 14 088973

    [29]

    Payne S A, Chase L L, Smith L K, Kway W L, Krupke W F 1992 IEEE J. Quantum Electron. 28 2619

  • [1]

    Rivera-Lopez F, Babu P, Basavapoornima C, Jayasankar C K, Lavin V 2011 J. Appl. Phys. 109 123514

    [2]

    Pearson A D, Porto S P S 1964 Appl. Phys. Lett. 4 202

    [3]

    Petit V, Camy P, Doualan J L, Moncorgé R 2006 Appl. Phys. Lett. 88 051111

    [4]

    Reichel V, Moerl K W, Unger S, Jetschke S, Mueller H, Kirchhof J, Sandrock T, Harschack A, Liem A, Limpert J, Zellmer H, Tuennermann A 2005 Proceedings of the XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers Bellingham, America, March 23, 2005 p404

    [5]

    Jetschke S, Reichel V, Moerl K, Unger S, Roepke U, Mueller H 2005 Proceedings of Fiber Lasers Ⅱ:Technology, Systems, and Applications Bellingham, America, April 22, 2005 p59

    [6]

    Limpert J, Liem A, Zellmer H, Tnnermann A 2003 Electron. Lett. 39 645

    [7]

    Jaque D, Ramirez M O, Bausá L E, Solé J G, Cavalli E, Speghini A, Bettinelli M 2003 Phys. Rev. B 68 035118

    [8]

    Ramirez M O, Jaque D, Bausá L E, Martín I R, Lahoz F, Cavalli E, Speghini A, Bettinelli M 2005 J. Appl. Phys. 97 093510

    [9]

    Galagan B I, Denker B I, Dmitruk L N, Motsartov V V, Osiko V V, Sverchkov S E 1996 J. Quantum Elect. 26 99

    [10]

    Sugimoto N, Ohishi Y, Katoh Y, Tate A, Shimokozono M, Sudo S 1995 Appl. Phys. Lett. 67 582

    [11]

    de Sousa D F, Batalioto F, Bell M J V, Oliveira S L, Nunes L A O 2001 J. Appl. Phys. 90 3308

    [12]

    Lurin C, Parent C, Le Flem G, Hagenmuller P 1985 J. Phys. Chem. Solids 46 1083

    [13]

    Lurin C, Parent C, Le Flem G 1985 J. Less-Common Metals 112 91

    [14]

    George S A, Pucilowski A, Hayden, J S, Urruti E H 2016 Proceeding of Advanced Solid State Lasers Boston, Massachusetts, Oct. 31-Nov. 3, 2016 pJTu2A. 18

    [15]

    Lupei V, Lupei A, Ikesue A 2005 Appl. Phys. Lett. 86 111118

    [16]

    Lupei V, Lupei A, Gheorghe C, Hau S, Ikesue A 2009 Opt. Lett. 34 2141

    [17]

    Borrero-González L J, Nunes L A O 2012 J. Phys.:Condens. Matter 24 385501

    [18]

    Borrero-González L J, Nunes L A O, Bianchi G S, Astrath F B G, Baesso M L 2013 J. Appl. Phys. 114 013103

    [19]

    Yu D C, Zhang Q Y 2013 Sci. China:Chem. 43 1431(in Chinese)[禹德朝, 张勤远2013中国科学:化学43 1431]

    [20]

    Jia Z T, Arcangeli A, Tao X T, Zhang J, Dong C M, Jiang M H, Bonelli L, Tonelli M 2009 J. Appl. Phys. 105 083113

    [21]

    Sontakke A D, Biswas K, Sen R, Annapurna K 2010 J. Opt. Soc. Am. B 27 2750

    [22]

    Chen S C, Mao S, Dai F M 1984 Acta Phys. Sin. 33 515 (in Chinese)[陈述春, 茅森, 戴凤妹1984 33 515]

    [23]

    Jaque D, García Solé J, Macalik L, Hanuza J, Majchrowski A 2005 Appl. Phys. Lett. 86 011920

    [24]

    Jaque D, Solé J G, Speghini A, Bettinelli M, Cavalli E, Ródenas A 2006 Phys. Rev. B 74 035106

    [25]

    Xu W, Zhao H, Zhang Z G, Cao W W 2013 Sens. Actuator B:Chem. 178 520

    [26]

    Lin Z Q, Yu C L, He D B, Feng S Y, Chen D P, Hu L L 2016 IEEE Photon. Tech. Lett. 28 2673

    [27]

    Lou L R, Yin M, Li Q T 2014 Fundamentals of Luminescence Physics:Optical Transition Processes in Solids (Hefei:Press of University of Science and Technology of China) p152(in Chinese)[楼立人, 尹民, 李清庭2014发光物理基础:固体光跃迁过程(合肥:中国科学技术大学出版社)第152页]

    [28]

    George S, Carlie N, Pucilowski S, Hayden J 2014 US Patent 14 088973

    [29]

    Payne S A, Chase L L, Smith L K, Kway W L, Krupke W F 1992 IEEE J. Quantum Electron. 28 2619

  • [1] Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong. Optimization of thermal performance of cladding power stripper in fiber laser. Acta Physica Sinica, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [2] Zhang Zhi-Lun, Zhang Fang-Fang, Lin Xian-Feng, Wang Shi-Jie, Cao Chi, Xing Ying-Bin, Liao Lei, Li Jin-Yan. Home-made confined-doped fiber with 3-kW all-fiber laser oscillating output. Acta Physica Sinica, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [3] Jia Meng-Yuan, Zhao Gang, Zhou Yue-Ting, Liu Jian-Xin, Guo Song-Jie, Wu Yong-Qian, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique. Acta Physica Sinica, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [4] Wang Shao-Qi, Deng Ying, Zhang Yong-Liang, Li Chao, Wang Fang, Kang Min-Qiang, Luo Yun, Xue Hai-Tao, Hu Dong-Xia, Su Jing-Qin, Zheng Kui-Xing, Zhu Qi-Hua. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser. Acta Physica Sinica, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [5] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [6] Xie Chen, Hu Ming-Lie, Zhang Da-Peng, Chai Lu, Wang Qing-Yue. High energy dissipative soliton mode-locked fiber oscillator based on a multipass cell. Acta Physica Sinica, 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [7] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [8] Jiang Jian, Chang Jian-Hua, Feng Su-Juan, Mao Qing-He. Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers. Acta Physica Sinica, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [9] Wang Lei-Ran, Liu Xue-Ming, Gong Yong-Kang. Experimental research on high-energy dissipative solitons in an erbium-doped fiber laser. Acta Physica Sinica, 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [10] Song You-Jian, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. Approaching 100 nJ pulse energy output from a mode-locked photonic crystal fiber laser. Acta Physica Sinica, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [11] Zhang Chi, Hu Ming-Lie, Song You-Jian, Zhang Xin, Chai Lu, Wang Qing-Yue. An Yb-doped large-mode-area photonic crystal fiber mode-locking laser with free output coupler. Acta Physica Sinica, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [12] Ren Guang-Jun, Wei Zhen, Yao Jian-Quan. Q-switched pulse polarization-maintaining Nd3+-doped fiber laser. Acta Physica Sinica, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [13] Yan Feng-Ping, Mao Xiang-Qiao, Wang Lin, Fu Yong-Jun, Wei Huai, Zheng Kai, Gong Tao-Rong, Liu Peng, Tao Pei-Lin, Jian Shui-Sheng. High stability mono-wavelength output optical fiber laser based on polarization-maintaining erbium-doped fiber. Acta Physica Sinica, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [14] Yan Feng-Ping, Wei Huai, Fu Yong-Jun, Wang Lin, Zheng Kai, Mao Xiang-Qiao, Liu Peng, Peng Jiang, Liu Li-Song, Jian Shui-Sheng. Tm3+ doped cladding pumped silica optic fiber laser. Acta Physica Sinica, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [15] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [16] Wang Jian-Ming, Duan Kai-Liang, Wang Yi-Shan. Experimental study of coherent beam combining of two fiber lasers. Acta Physica Sinica, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [17] Song You-Jian, Hu Ming-Lie, Liu Qing-Wen, Li Jin-Yan, Chen Wei, Chai Lu, Wang Qing-Yue. A mode-locked Yb3+-doped double-clad large-mode-area fiber laser. Acta Physica Sinica, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [18] Song You-Jian, Hu Ming-Lie, Liu Bo-Wen, Chai Lu, Wang Qing-Yue. High energy femtosecond soliton mode-locking laser based on Yb-doped single polarization large-mode-area photonic crystal fiber. Acta Physica Sinica, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [19] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [20] Dong Shu-Fu, Zhan Sheng-Bao, Chen Guo-Fu, Wang Xian-Hua. Dynamic behavior analysis of the 3μm and 2μm cascade Ho3+:ZBLAN fiber lasers. Acta Physica Sinica, 2005, 54(7): 3154-3158. doi: 10.7498/aps.54.3154
Metrics
  • Abstract views:  6371
  • PDF Downloads:  201
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2017
  • Accepted Date:  05 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map