-
Ytterbium doped fiber lasers (YDFLs) with small volume, good beam quality, good heat dissipation performance and high conversion efficiency are widely used in industrial processing, military, medical and other fields. In past decades, with the development of high-performance double cladding gain fiber and fiber devices, the output power of YDFLs increases rapidly. However, nonlinear effects (NLEs), such as stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), are produced, which limits the further enhancement of the output power of fiber laser. Large mode area ytterbium-doped fiber (LMAYDF) can effectively increase the nonlinear effect threshold. However, increasing the core diameter will support more high-order modes (HOMs), which may lead the beam quality to deteriorate and induce the mode instability (MI) effect to occur in fiber lasers. Thus, MI and NLEs have become the main limiting factors for the further improving of output power and beam quality in fiber lasers. The confined-doped ytterbium-doped double-clad fiber (CDYDF), by reducing the doping diameter of gain ions in the fiber core, makes the fundamental mode (FM) dominate in mode competition and HOM suppressed to achieve LMAYDF gain control for different modes, thus improving the output power of the fiber laser and maintaining good beam quality. The 33/400 μm confined-doped ytterbium-doped double-clad fiber (CDYDF) is fabricated by modifying the chemical vapor deposition (MCVD) process with solution doping technology (SDT). The Yb3+ doping diameter ratio is 70% and refractive index profile is close to step-index. Utilizing the master oscillator power amplifier (MOPA) system the beam quality optimization effect of confined-doped fiber is verified and optimized to 1.43 as the power increases while the M2 of seed laser is 1.53. An all-fiber structure counter-pumped fiber oscillator is constructed to test the laser performance of home-made confined-doped fiber. When the pump power is ~4.99 kW, laser power of 3.14 kW with a central wavelength of 1081 nm and line width of 3.2 nm at 3 dB is obtained. Moreover, there is no MI nor SRS in the whole experiment. We demonstrate that it is the highest output power based on home-made confined-doped fiber. The above results indicate that confined-doped fibers have the potential to achieve high-power and high-beam-quality fiber laser output.
-
Keywords:
- confined-doped fiber /
- beam quality /
- mode instability /
- fiber laser
[1] Jauregui C, Jens L, Andreas T 2013 Nat. Photonics 7 861Google Scholar
[2] Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 219Google Scholar
[3] 蒙红云, 廖键宏, 刘颂豪 2004 激光与光电子学进展 41 55
Meng H Y, Liao J H, Liu S H 2004 Las. Optoelect. Prog. 41 55
[4] 楼祺洪, 朱健强, 周军, 朱晓峥, 王之江 2003 装备指挥技术学院学报 5 28
Lou Q H, Zhu J Q, Zhou J, Zhu X Z, Wang Z J 2003 J. Equip. Acad. 5 28
[5] 李磐, 师红星, 符聪, 薛亚飞, 邹岩 2018 激光与光电子学进展 55 121406Google Scholar
Li P, Shi H X, Fu C, Xue Y F, Zou Y 2018 Las. Optoelect. Prog. 55 121406Google Scholar
[6] 王雪娇, 肖起榕, 闫平, 陈霄, 李丹 2015 64 164204Google Scholar
Wang X J, Xiao Q R, Yan P, Chen X, Li D 2015 Acta Phys. Sin. 64 164204Google Scholar
[7] 王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐 2018 67 024205Google Scholar
Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L 2018 Acta Phys. Sin. 67 024205Google Scholar
[8] 张汉伟, 杨保来, 王小林, 史尘, 叶青 2018 中国激光 45 0415002
Zhang H W, Yang B L, Wang X L, Shi C, Ye Q 2018 Chin. J. Las. 45 0415002
[9] 杨保来, 王小林, 叶云, 曾令筏, 张汉伟 2020 中国激光 47 0116001Google Scholar
Yang B L, Wang X L, Ye Y, Zeng L F, Zhang H W 2020 Chin. J. Las. 47 0116001Google Scholar
[10] Richardson D J, Nilsson J, Clarkson W 2010 J. Opt. Soc. Am. B 27 B63Google Scholar
[11] Smith A V, Jesse J S 2011 Opt. Express 19 10180Google Scholar
[12] Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F 2011 Opt. Express 19 13218Google Scholar
[13] Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407Google Scholar
[14] Dong L 2013 Opt. Express 21 2642Google Scholar
[15] Hansen K R, Alkeskjold T T, Broeng J 2013 Opt. Lett. 37 2382
[16] Naderi S, Dajani I, Madden T 2013 Opt. Express 21 16111Google Scholar
[17] Ye C, Koponen J, Kokki T, Kokki T, Ponsoda J M, Tervonen A, Honkanen S 2012 Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems and Applications San Francisco, California, United State, February 2−15, 2012 p823737
[18] Liao L, Zhang F, He X, Chen Y, Wang Y 2018 Appl. Opt. 57 3244Google Scholar
[19] Mashiko Y, Nguyen H K, Kashiwagi M, Kitabayashi T, Shima K, Tanaka D 2016 Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems and Applications San Francisco, California, United State, March 3−9, 2016 p972805
[20] Shima K, Ikoma S, Uchiyama K, Takubo Y, Kashiwagi M, Tanaka D 2018 Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems San Francisco, California, United State, February 2−26, 2018 p10512C
[21] Wang Y, Kitahara R, Kiyoyama W, Shirakura Y, Kurihara T, Nakanish Y 2020 Proc. SPIE 11260, Fiber Lasers XVII: Technology and Systems San Francisco, California, United State, February 2−21, 2020 p1126022
[22] Liu Y, Zhang F, Zhao N, Lin X, Liao L 2018 Opt. Express 26 3421Google Scholar
[23] Zhang F, Wang Y, Lin X, Cheng Y, Zhang Z 2019 Opt. Express 27 20824Google Scholar
-
-
[1] Jauregui C, Jens L, Andreas T 2013 Nat. Photonics 7 861Google Scholar
[2] Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 219Google Scholar
[3] 蒙红云, 廖键宏, 刘颂豪 2004 激光与光电子学进展 41 55
Meng H Y, Liao J H, Liu S H 2004 Las. Optoelect. Prog. 41 55
[4] 楼祺洪, 朱健强, 周军, 朱晓峥, 王之江 2003 装备指挥技术学院学报 5 28
Lou Q H, Zhu J Q, Zhou J, Zhu X Z, Wang Z J 2003 J. Equip. Acad. 5 28
[5] 李磐, 师红星, 符聪, 薛亚飞, 邹岩 2018 激光与光电子学进展 55 121406Google Scholar
Li P, Shi H X, Fu C, Xue Y F, Zou Y 2018 Las. Optoelect. Prog. 55 121406Google Scholar
[6] 王雪娇, 肖起榕, 闫平, 陈霄, 李丹 2015 64 164204Google Scholar
Wang X J, Xiao Q R, Yan P, Chen X, Li D 2015 Acta Phys. Sin. 64 164204Google Scholar
[7] 王泽晖, 肖起榕, 王雪娇, 衣永青, 庞璐 2018 67 024205Google Scholar
Wang Z H, Xiao Q R, Wang X J, Yi Y Q, Pang L 2018 Acta Phys. Sin. 67 024205Google Scholar
[8] 张汉伟, 杨保来, 王小林, 史尘, 叶青 2018 中国激光 45 0415002
Zhang H W, Yang B L, Wang X L, Shi C, Ye Q 2018 Chin. J. Las. 45 0415002
[9] 杨保来, 王小林, 叶云, 曾令筏, 张汉伟 2020 中国激光 47 0116001Google Scholar
Yang B L, Wang X L, Ye Y, Zeng L F, Zhang H W 2020 Chin. J. Las. 47 0116001Google Scholar
[10] Richardson D J, Nilsson J, Clarkson W 2010 J. Opt. Soc. Am. B 27 B63Google Scholar
[11] Smith A V, Jesse J S 2011 Opt. Express 19 10180Google Scholar
[12] Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F 2011 Opt. Express 19 13218Google Scholar
[13] Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407Google Scholar
[14] Dong L 2013 Opt. Express 21 2642Google Scholar
[15] Hansen K R, Alkeskjold T T, Broeng J 2013 Opt. Lett. 37 2382
[16] Naderi S, Dajani I, Madden T 2013 Opt. Express 21 16111Google Scholar
[17] Ye C, Koponen J, Kokki T, Kokki T, Ponsoda J M, Tervonen A, Honkanen S 2012 Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems and Applications San Francisco, California, United State, February 2−15, 2012 p823737
[18] Liao L, Zhang F, He X, Chen Y, Wang Y 2018 Appl. Opt. 57 3244Google Scholar
[19] Mashiko Y, Nguyen H K, Kashiwagi M, Kitabayashi T, Shima K, Tanaka D 2016 Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems and Applications San Francisco, California, United State, March 3−9, 2016 p972805
[20] Shima K, Ikoma S, Uchiyama K, Takubo Y, Kashiwagi M, Tanaka D 2018 Proc. SPIE 10512, Fiber Lasers XV: Technology and Systems San Francisco, California, United State, February 2−26, 2018 p10512C
[21] Wang Y, Kitahara R, Kiyoyama W, Shirakura Y, Kurihara T, Nakanish Y 2020 Proc. SPIE 11260, Fiber Lasers XVII: Technology and Systems San Francisco, California, United State, February 2−21, 2020 p1126022
[22] Liu Y, Zhang F, Zhao N, Lin X, Liao L 2018 Opt. Express 26 3421Google Scholar
[23] Zhang F, Wang Y, Lin X, Cheng Y, Zhang Z 2019 Opt. Express 27 20824Google Scholar
Catalog
Metrics
- Abstract views: 7948
- PDF Downloads: 177
- Cited By: 0