Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of fracture problems of airport pavement by improved element-free Galerkin method

Zou Shi-Ying Xi Wei-Cheng Peng Miao-Juan Cheng Yu-Min

Citation:

Analysis of fracture problems of airport pavement by improved element-free Galerkin method

Zou Shi-Ying, Xi Wei-Cheng, Peng Miao-Juan, Cheng Yu-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using the improved element-free Galerkin (IEFG) method, in this paper we introduce the characteristic parameter r which can reflect the singular stress near the crack tip into the basic function of the improved moving least-squares (IMLS) approximation. Combining fracture theory with the IEFG method, we present an IEFG method of treating the elastic fracture problems, and analyze a numerical example of two-dimensional layered system of airport composite pavement with reflective crack. In the IEFG method, the IMLS approximation is used to form the shape function. The IMLS approximation is presented from the moving least-squares (MLS) approximation, which is the basis of the element-free Galerkin (EFG) method. Compared with the MLS approximation, the IMLS approximation uses the orthonormal basis functions to obtain the shape function, which leads to the fact that the matrices for obtaining the undetermined coefficients are diagonal. Then the IMLS approximation can obtain the solutions of the undetermined coefficients directly without the inverse matrices. The IMLS approximation can overcome the disadvantages of the MLS approximation, in which the ill-conditional or singular matrices are formed sometimes. And it can also improve the computational efficiency of the MLS approximation. Because of the advantages of the IMLS approximation, the IEFG method has greater computational efficiency than the EFG method which is based on the MLS approximation, and can obtain the solution for arbitrary node distribution, even though the EFG method cannot obtain the solution due to the ill-conditional or singular matrices in the MLS approximation. Paving the asphalt concrete layer on the cement concrete pavement is an effective approach to improving the structure and service performance of an airport pavement, which is called airport composite pavement. The airport composite pavement has the advantages of rigid pavement and flexible pavement, but there are various forms of joints or cracks of cement concrete slab, which makes the crack reflect into the asphalt overlay easily under the plane load and environmental factors. Reflective crack is one of the main failure forms of the airport composite pavement. Therefore, it is of great theoretical significance and engineering application to study the generation and development mechanism of reflective crack of the airport composite pavement. For the numerical methods of solving the fracture problems, introducing the characteristic parameter r which can reflect the singular stress near the crack tip into the basic function is a general approach. In this paper, we use this approach to obtain the IEFG method for fracture problems, and the layered system of airport composite pavement with reflective crack is considered. The numerical results of the displacements and stresses in the airport composite pavement are given. And at the tip of the crack, the stress is singular, which makes the crack of the airport composite pavement grow. This paper provides a new method for solving the reflective crack problem of airport composite pavement.
      Corresponding author: Cheng Yu-Min, ymcheng@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1433104).
    [1]

    Cheng Y M 2015 Meshless Methods (Beijing: Science Press) pp1-13 (in Chinese) [程玉民2015无网格方法 (北京: 科学出版社) 第1-13页]

    [2]

    Cheng Y M, Ji X, He P F 2004 Acta Mech. Sin. 36 43 (in Chinese) [程玉民, 嵇醒, 贺鹏飞 2004 力学学报 36 43]

    [3]

    Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese) [程玉民, 陈美娟 2003 力学学报 35 181]

    [4]

    Cheng Y M, Liew K M, Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258

    [5]

    Cheng Y M, Peng M J, Li J H 2005 Chin. J. Theor. Appl. Mech. 37 719 (in Chinese) [程玉民, 彭妙娟, 李九红 2005 应用力学学报 37 719]

    [6]

    Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 54 4463]

    [7]

    Bai F N, Li D M, Wang J F, Cheng Y M 2012 Chin. Phys. B 21 020204

    [8]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 57 1]

    [9]

    Peng M J, Li R X, Cheng Y M 2014 Eng. Anal. Bound. Elem. 40 104

    [10]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203

    [11]

    Sun F X, Wang J F, Cheng Y M 2013 Chin. Phys. B 22 120203

    [12]

    Cheng Y M, Bai F N, Peng M J 2014 Appl. Math. Modell. 38 5187

    [13]

    Cheng Y M, Bai F N, Liu C, Peng M J 2016 Int. J. Comput. Mater. Sci. Eng. 5 1650023

    [14]

    Sun F X, Wang J F, Cheng Y M 2016 Int. J. Appl. Mech. 8 1650096

    [15]

    Cheng Y M, Peng M J 2005 Sci. China Ser. G 48 641

    [16]

    Peng M J, Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77

    [17]

    Ren H P, Cheng Y M, Zhang W 2009 Chin. Phys. B 18 4065

    [18]

    Wang J F, Wang J F, Sun F X, Cheng Y M 2013 Int. J. Comput. Meth. 10 1350043

    [19]

    Cheng Y M, Li J H 2006 Sci. China Ser. G 49 46

    [20]

    Peng M J, Li D M, Cheng Y M 2011 Eng. Struct. 33 127

    [21]

    Li D M, Peng M J, Cheng Y M 2011 Sci. Sin.: Phys. Mech. Astron. 41 1003 (in Chinese) [李冬明, 彭妙娟, 程玉民 2011 中国科学: 物理学 力学 天文学 41 1003]

    [22]

    Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205

    [23]

    Cheng Y M, Wang J F, Li R X 2012 Int. J. Appl. Mech. 4 1250042

    [24]

    Cheng Y M, Wang J F, Bai F N 2012 Chin. Phys. B 21 090203

    [25]

    Deng Y J, Liu C, Peng M J, Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017

    [26]

    Cheng Y M, Liu C, Bai F N, Peng M J 2015 Chin. Phys. B 24 100202

    [27]

    Chen L, Ma H P, Cheng Y M 2013 Chin. Phys. B 22 050202

    [28]

    Weng Y J, Cheng Y M 2013 Chin. Phys. B 22 090204

    [29]

    Chen L, Cheng Y M, Ma H P 2015 Comput. Mech. 55 591

    [30]

    Garzon J, Duarte C A, Buttlar W 2010 Road Mater. Pavement Design 11 459

    [31]

    Garzon J, Kim D, Duarte C A 2013 Int. J. Comput. Meth. 10 1350045

    [32]

    Li S M, Cai X M, Xu Z H 2005 J. Tongji Univ. (Nat. Sci.) 33 1616 (in Chinese) [李淑明, 蔡喜棉, 许志鸿 2005 同济大学学报(自然科学版) 33 1616]

    [33]

    Wo R H, Ling J M 2001 J. Tongji Univ. 29 288 (in Chinese) [呙润华, 凌建明 2001 同济大学学报 29 288]

    [34]

    Zhou Z F, Ling J M, Yuan J 2007 J. Traffic Transport. Eng. 7 50 (in Chinese) [周正峰, 凌建明, 袁捷 2007 交通运输工程学报 7 50]

    [35]

    Ma X, Ni F J, Chen R S 2010 J. Changan Univ. (Nat. Sci.) 30 23 (in Chinese) [马翔, 倪富健, 陈荣生2010 长安大学学报 (自然科学版) 30 23]

    [36]

    Ma X, Ni F J, Gu X Y 2010 J. Traffic Transport. Eng. 10 36 (in Chinese) [马翔, 倪富健, 顾兴宇 2010 交通运输工程学报 10 36]

  • [1]

    Cheng Y M 2015 Meshless Methods (Beijing: Science Press) pp1-13 (in Chinese) [程玉民2015无网格方法 (北京: 科学出版社) 第1-13页]

    [2]

    Cheng Y M, Ji X, He P F 2004 Acta Mech. Sin. 36 43 (in Chinese) [程玉民, 嵇醒, 贺鹏飞 2004 力学学报 36 43]

    [3]

    Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese) [程玉民, 陈美娟 2003 力学学报 35 181]

    [4]

    Cheng Y M, Liew K M, Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258

    [5]

    Cheng Y M, Peng M J, Li J H 2005 Chin. J. Theor. Appl. Mech. 37 719 (in Chinese) [程玉民, 彭妙娟, 李九红 2005 应用力学学报 37 719]

    [6]

    Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 54 4463]

    [7]

    Bai F N, Li D M, Wang J F, Cheng Y M 2012 Chin. Phys. B 21 020204

    [8]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 57 1]

    [9]

    Peng M J, Li R X, Cheng Y M 2014 Eng. Anal. Bound. Elem. 40 104

    [10]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203

    [11]

    Sun F X, Wang J F, Cheng Y M 2013 Chin. Phys. B 22 120203

    [12]

    Cheng Y M, Bai F N, Peng M J 2014 Appl. Math. Modell. 38 5187

    [13]

    Cheng Y M, Bai F N, Liu C, Peng M J 2016 Int. J. Comput. Mater. Sci. Eng. 5 1650023

    [14]

    Sun F X, Wang J F, Cheng Y M 2016 Int. J. Appl. Mech. 8 1650096

    [15]

    Cheng Y M, Peng M J 2005 Sci. China Ser. G 48 641

    [16]

    Peng M J, Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77

    [17]

    Ren H P, Cheng Y M, Zhang W 2009 Chin. Phys. B 18 4065

    [18]

    Wang J F, Wang J F, Sun F X, Cheng Y M 2013 Int. J. Comput. Meth. 10 1350043

    [19]

    Cheng Y M, Li J H 2006 Sci. China Ser. G 49 46

    [20]

    Peng M J, Li D M, Cheng Y M 2011 Eng. Struct. 33 127

    [21]

    Li D M, Peng M J, Cheng Y M 2011 Sci. Sin.: Phys. Mech. Astron. 41 1003 (in Chinese) [李冬明, 彭妙娟, 程玉民 2011 中国科学: 物理学 力学 天文学 41 1003]

    [22]

    Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205

    [23]

    Cheng Y M, Wang J F, Li R X 2012 Int. J. Appl. Mech. 4 1250042

    [24]

    Cheng Y M, Wang J F, Bai F N 2012 Chin. Phys. B 21 090203

    [25]

    Deng Y J, Liu C, Peng M J, Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017

    [26]

    Cheng Y M, Liu C, Bai F N, Peng M J 2015 Chin. Phys. B 24 100202

    [27]

    Chen L, Ma H P, Cheng Y M 2013 Chin. Phys. B 22 050202

    [28]

    Weng Y J, Cheng Y M 2013 Chin. Phys. B 22 090204

    [29]

    Chen L, Cheng Y M, Ma H P 2015 Comput. Mech. 55 591

    [30]

    Garzon J, Duarte C A, Buttlar W 2010 Road Mater. Pavement Design 11 459

    [31]

    Garzon J, Kim D, Duarte C A 2013 Int. J. Comput. Meth. 10 1350045

    [32]

    Li S M, Cai X M, Xu Z H 2005 J. Tongji Univ. (Nat. Sci.) 33 1616 (in Chinese) [李淑明, 蔡喜棉, 许志鸿 2005 同济大学学报(自然科学版) 33 1616]

    [33]

    Wo R H, Ling J M 2001 J. Tongji Univ. 29 288 (in Chinese) [呙润华, 凌建明 2001 同济大学学报 29 288]

    [34]

    Zhou Z F, Ling J M, Yuan J 2007 J. Traffic Transport. Eng. 7 50 (in Chinese) [周正峰, 凌建明, 袁捷 2007 交通运输工程学报 7 50]

    [35]

    Ma X, Ni F J, Chen R S 2010 J. Changan Univ. (Nat. Sci.) 30 23 (in Chinese) [马翔, 倪富健, 陈荣生2010 长安大学学报 (自然科学版) 30 23]

    [36]

    Ma X, Ni F J, Gu X Y 2010 J. Traffic Transport. Eng. 10 36 (in Chinese) [马翔, 倪富健, 顾兴宇 2010 交通运输工程学报 10 36]

  • [1] Cheng Qiu-Zhen, Huang Yin, Li Yu-Hui, Zhang Kai, Xian Guo-Yu, Liu He-Yuan, Che Bing-Yu, Pan Lu-Lu, Han Ye-Chao, Zhu Ke, Qi Qi, Xie Yao-Feng, Pan Jin-Bo, Chen Hai-Long, Li Yong-Feng, Guo Hui, Yang Hai-Tao, Gao Hong-Jun. In-plane optical anisotropy of quasi-one-dimensional layered semiconductor Nb4P2S21 single crystal. Acta Physica Sinica, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [2] Yu Xiao-Yang, Feng Hong-Lei, Gu Gang-Xu, Liu Yong-He, Li Zhi-Lin, Xu Tong-Shuai, Li Yong-Qing. Andreev reflection spectroscopy of ferromagnetic Fe0.26TaS2 with layered structure. Acta Physica Sinica, 2019, 68(24): 247201. doi: 10.7498/aps.68.20191221
    [3] Zhang Peng-Xuan, Peng Miao-Juan. Interpolating element-free Galerkin method for viscoelasticity problems. Acta Physica Sinica, 2019, 68(17): 170203. doi: 10.7498/aps.68.20191047
    [4] Lou Guo-Feng, Yu Xin-Jie, Lu Shi-Hua. Equivalent circuit model for plate-type magnetoelectric laminate composite considering an interface coupling factor. Acta Physica Sinica, 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [5] Peng Miao-Juan, Liu Qian. Improved complex variable element-free Galerkin method for viscoelasticity problems. Acta Physica Sinica, 2014, 63(18): 180203. doi: 10.7498/aps.63.180203
    [6] Qi You-Zheng, Huang Ling, Zhang Jian-Guo, Fang Guang-You. Study on the electromagnetic fields of an extended source over layered models. Acta Physica Sinica, 2013, 62(23): 234201. doi: 10.7498/aps.62.234201
    [7] Wang Jian-Xun, Wang Hong-Nian, Zhou Jian-Mei, Yang Shou-Wen, Liu Xiao-Jun, Yin Chang-Chun. Simulation of marine controlled-source electromagnetic response in horizontally layered transversely isotropic formation by using improved transmission line method. Acta Physica Sinica, 2013, 62(22): 224101. doi: 10.7498/aps.62.224101
    [8] Yu Xin-Jie, Wu Tian-Yi, Li Zhen. Wireless energy transfer system based on metglas/PFC magnetoelectric laminated composites. Acta Physica Sinica, 2013, 62(5): 058503. doi: 10.7498/aps.62.058503
    [9] Feng Zhao, Wang Xiao-Dong, Ouyang Jie. The element-free Galerkin method based on the shifted basis for solving the Kuramoto- Sivashinsky equation. Acta Physica Sinica, 2012, 61(23): 230204. doi: 10.7498/aps.61.230204
    [10] Wang Wei, Luo Xiao-Bin, Yang Li-Jie, Zhang Ning. Magnetocapacitance effect of magnetoelectric laminated composite at resonant frequency. Acta Physica Sinica, 2011, 60(10): 107702. doi: 10.7498/aps.60.107702
    [11] Cheng Yu-Min, Cheng Rong-Jun. Error estimate of element-free Galerkin method for elasticity. Acta Physica Sinica, 2011, 60(7): 070206. doi: 10.7498/aps.60.070206
    [12] Zheng Bao-Jing, Dai Bao-Dong. Improved meshless local Petrov-Galerkin method for two-dimensional potential problems. Acta Physica Sinica, 2010, 59(8): 5182-5189. doi: 10.7498/aps.59.5182
    [13] Yang Wei-Wei, Wen Yu-Mei, Li Ping, Bian Lei-Xiang. Magnetoelectric response of GMM/elastic plate/PZT laminated composite in the longitudinal vibration. Acta Physica Sinica, 2008, 57(7): 4545-4551. doi: 10.7498/aps.57.4545
    [14] Cheng Rong-Jun, Cheng Yu-Min. Error estimates of element-free Galerkin method for potential problems. Acta Physica Sinica, 2008, 57(10): 6037-6046. doi: 10.7498/aps.57.6037
    [15] Wang Guan-Fang, Liu Bin, Fu Li-Bin, Zhao Hong. Adiabatic Landau-Zener tunnelling in nonlinear three-level system. Acta Physica Sinica, 2007, 56(7): 3733-3738. doi: 10.7498/aps.56.3733
    [16] Wan Hong, Xie Li-Qiang, Wu Xue-Zhong, Liu Xi-Cong. Magnetoelectric effect of the TbDyFe/PZT laminated composite. Acta Physica Sinica, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [17] Zhang Hai-Yan, Liu Zhen-Qing, Ma Xiao-Song. The influence of interface layer characteristics on Lamb waves in layered anisot ropic media. Acta Physica Sinica, 2003, 52(10): 2492-2499. doi: 10.7498/aps.52.2492
    [18] ZHANG RUI, WAN MING-XI, CAO WEN-WU. GUIDED WAVE IN ULTRA-THIN LAYERED COMPOSITE STRUCTURE WITH WEAK AND SLIP INTERFA CE IN DIFFERENT DEPTH. Acta Physica Sinica, 2000, 49(7): 1297-1302. doi: 10.7498/aps.49.1297
    [19] LIN KUN-ZHI. THE DESCRIPTION OF DOUBLE WAVE FUNCTION OF PARTICLE MOTION IN THE REFLECTIONLESS POTENTIAL WELL. Acta Physica Sinica, 1996, 45(3): 360-369. doi: 10.7498/aps.45.360
    [20] ZHOU GUANG-HUI. EXACT SOLUTION OF SCHR?DINGER EQUATION WITH REFLECTIONLESS POTENTIAL WELL. Acta Physica Sinica, 1993, 42(2): 173-179. doi: 10.7498/aps.42.173
Metrics
  • Abstract views:  6158
  • PDF Downloads:  187
  • Cited By: 0
Publishing process
  • Received Date:  26 February 2017
  • Accepted Date:  26 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map