-
In this paper, based on the improved interpolating moving least-square (IMLS) approximation, the interpolating element-free Galerkin (IEFG) method for two-dimensional viscoelasticity problems is presented. The shape function constructed by the IMLS approximation can overcome the shortcomings that the shape function of the moving least-squares (MLS) can-not satisfy the property of Kronecker function, so the essential boundary conditions can be directly applied to the IEFG method. Under a similar computational precision, compared with the meshless method based on the MLS approximation, the meshless method using the IMLS approximation has a high computational efficiency. Using the IMLS approximation to form the shape function and adopting the Galerkin weak form of the two-dimensional viscoelasticity problem to obtain the final discretized equation, the formulae for two-dimensional viscoelasticity problem are derived by the IEFG method. The IEFG method has some advantages over the conventional element-free Galerkin (EFG) method, such as the concise formulae and direct application of the essential boundary conditions, For the IEFG method of two-dimensional viscoelasticity problems proposed in this paper, three numerical examples and one engineering example are given. The convergence of the method is analyzed by considering the effects of the scale parameters of influence domains and the node distribution on the computational precision of the solutions. It is shown that when dmax = 1.01−2.00, the method in this paper has a good convergence. The numerical results from the IEFG method are compared with those from the EFG method and from the finite element method or analytical solution. We can see that the IEFG method in this paper is effective. The results of the examples show that the IEFG method has the advantage in improving the computational efficiency of the EFG method under a similar computational accuracy. And the engineering example shows that the IEFG method can not only has higher computational precision, but also improve the computational efficiency.
-
Keywords:
- meshless method /
- improved interpolating moving least-squares approxiamtion /
- interpolating element-free Galerkin method /
- viscoelasticity problem
[1] 程玉民 2015 无网格方法 (北京: 科学出版社) 第1−13 页
Cheng Y M 2015 Meshless Methods (Beijing: Science Press) pp1−13 (in Chinese)
[2] 程荣军, 程玉民 2008 57 6037Google Scholar
Cheng R J, Cheng Y M 2008 Acta Phys. Sin. 57 6037Google Scholar
[3] Cheng Y M, Wang J F, Li R X 2012 Int. J. Appl. Mech. 4 1250042Google Scholar
[4] Chen L, Cheng Y M, Ma H P 2015 Comput. Mech. 55 591Google Scholar
[5] Chen L, Cheng Y M 2018 Comput. Mech. 62 67Google Scholar
[6] Chen L, Cheng Y M 2010 Chin. Phys. B 19 090204Google Scholar
[7] Cheng R J, Cheng Y M 2008 Appl. Numer. Math. 58 884Google Scholar
[8] Chen L, Liu C, Ma H P, et al. 2014 Int. J. Appl. Mech. 6 1450009Google Scholar
[9] 李树忱, 程玉民 2004 力学学报 36 496Google Scholar
Li S C, Cheng Y M 2004 Acta Mech. Sin. 36 496Google Scholar
[10] Gao H F, Cheng Y M 2010 Int. J. Comput. Meth. 7 55Google Scholar
[11] 程玉民, 李九红 2005 54 4463Google Scholar
Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463Google Scholar
[12] Cheng Y M, Li J H 2006 Sci. China Ser. G 49 46
[13] 程玉民, 彭妙娟, 李九红 2005 力学学报 37 719Google Scholar
Cheng Y M, Peng M J, Li J H 2005 Acta Mech. Sin. 37 719Google Scholar
[14] Bai F N, Li D M, Wang J F, Cheng Y M 2012 Chin. Phys. B 21 020204Google Scholar
[15] Cheng Y M, Wang J F, Bai F N 2012 Chin. Phys. B 21 090203Google Scholar
[16] Cheng H, Peng M J, Cheng Y M 2017 Eng. Anal. Boundary Elem. 84 52Google Scholar
[17] Cheng H, Peng M J, Cheng Y M 2017 Int. J. Appl. Mech. 9 1750090Google Scholar
[18] Cheng H, Peng M J, Cheng Y M 2018 Int. J. Numer. Methods Eng. 114 321Google Scholar
[19] Cheng H, Peng M J, Cheng Y M 2018 Eng. Anal. Boundary Elem. 97 39Google Scholar
[20] 程玉民, 陈美娟 2003 力学学报 35 181Google Scholar
Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181Google Scholar
[21] Cheng Y M, Peng M J 2005 Sci. China Ser. G 48 641
[22] 秦义校, 程玉民 2006 55 3215Google Scholar
Qin Y X, Cheng Y M 2006 Acta Phys. Sin. 55 3215Google Scholar
[23] Peng M J, Cheng Y M 2009 Eng. Anal. Boundary Elem. 33 77Google Scholar
[24] Ren H P, Cheng Y M, Zhang W 2009 Chin. Phys. B 18 4065Google Scholar
[25] Ren H P, Cheng Y M, Zhang W 2010 Sci. China Ser. G 53 758Google Scholar
[26] Wang J F, Wang J F, Sun F X, Cheng Y M 2013 Int. J. Comput. Methods 10 1350043Google Scholar
[27] Zhang Z, Li D M, Cheng Y M, et al. 2012 Acta Mech. Sin. 28 808Google Scholar
[28] Zhang Z, Hao S Y, Liew K M, et al. 2013 Eng. Anal. Boundary Elem. 37 1576Google Scholar
[29] Zhang Z, Wang J F, Cheng Y M, et al. 2013 Sci. China Ser. G 56 1568Google Scholar
[30] Cheng R J, Liew K M 2012 Eng. Anal. Boundary Elem. 36 1322Google Scholar
[31] Cheng R J, Wei Q 2013 Chin. Phys. B 22 060209Google Scholar
[32] Peng M J, Li R X, Cheng Y M 2014 Eng. Anal. Boundary Elem. 40 104Google Scholar
[33] 蔡小杰, 彭妙娟, 程玉民 2018 中国科学: 物理学 力学 天文学 48 024701Google Scholar
Cai X J, Peng M J, Cheng Y M 2018 Sci. China: Phys. Mech. Astron. 48 024701Google Scholar
[34] Yu S Y, Peng M J, Cheng H, Cheng Y M 2019 Eng. Anal. Boundary Elem. 104 215Google Scholar
[35] 邹诗莹, 席伟成, 彭妙娟, 程玉民 2017 66 120204Google Scholar
Zou S Y, Xi W C, Peng M J, Cheng Y M 2017 Acta Phys. Sin. 66 120204Google Scholar
[36] Wu Y, Ma Y Q, Feng W, Cheng Y M 2017 Chin. Phys. B 26 080203Google Scholar
[37] Meng Z J, Cheng H, Ma L D, Cheng Y M 2018 Acta Mech. Sin. 34 462Google Scholar
[38] Meng Z J, Cheng H, Ma L D, Cheng Y M 2019 Sci. China Ser. G 62 040711Google Scholar
[39] Meng Z J, Cheng H, Ma L D, Cheng Y M 2019 Int. J. Numer. Methods Eng. 117 15Google Scholar
[40] Lancaster P, Salkauskas K 1981 Math. Comput. 37 141Google Scholar
[41] Ren H P, Cheng Y M 2011 Int. J. Appl. Mech. 3 735Google Scholar
[42] Ren H P, Cheng Y M 2012 Eng. Anal. Boundary Elem. 36 873Google Scholar
[43] Cheng Y M, Bai F N, Peng M J 2014 Appl. Math. Model. 38 5187Google Scholar
[44] Cheng Y M, Bai F N, Liu C, Peng M J 2016 Int. J. Comput. Mater. Sci. Eng. 5 1650023
[45] Deng Y J, Liu C, Peng M J, Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017Google Scholar
[46] Wang J F, Sun F X, Cheng Y M 2012 Chin. Phys. B 21 090204Google Scholar
[47] Sun F X, Wang J F, Cheng Y M 2013 Chin. Phys. B 22 120203Google Scholar
[48] Sun F X, Wang J F, Cheng Y M 2016 Int. J. Appl. Mech. 8 1650096Google Scholar
[49] Wang J F, Hao S Y, Cheng Y M 2014 Math. Probl. Eng. 2014 641592
[50] Wang J F, Sun F X, Cheng Y M, Huang A X 2014 Appl. Math. Comput. 245 321
[51] Sun F X, Wang J F, Cheng Y M 2015 Appl. Numer. Math. 98 79Google Scholar
[52] Liu F B, Cheng Y M 2018 Int. J. Comput. Mater. Sci. Eng. 7 1850023
[53] Liu F B, Cheng Y M 2018 Int. J. Appl. Mech. 10 1850047Google Scholar
[54] Liu F B, Wu Q, Cheng Y M 2019 Int. J. Appl. Mech. 11 1950006Google Scholar
[55] Yang H T, Liu Y 2003 Int. J. Solids Struct. 40 701Google Scholar
[56] Canelas A, Sensale B 2010 Eng. Anal. Boundary Elem. 34 845Google Scholar
[57] Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205Google Scholar
[58] 彭妙娟, 刘茜 2014 63 180203Google Scholar
Peng M J, Liu Q 2014 Acta Phys. Sin. 63 180203Google Scholar
-
-
[1] 程玉民 2015 无网格方法 (北京: 科学出版社) 第1−13 页
Cheng Y M 2015 Meshless Methods (Beijing: Science Press) pp1−13 (in Chinese)
[2] 程荣军, 程玉民 2008 57 6037Google Scholar
Cheng R J, Cheng Y M 2008 Acta Phys. Sin. 57 6037Google Scholar
[3] Cheng Y M, Wang J F, Li R X 2012 Int. J. Appl. Mech. 4 1250042Google Scholar
[4] Chen L, Cheng Y M, Ma H P 2015 Comput. Mech. 55 591Google Scholar
[5] Chen L, Cheng Y M 2018 Comput. Mech. 62 67Google Scholar
[6] Chen L, Cheng Y M 2010 Chin. Phys. B 19 090204Google Scholar
[7] Cheng R J, Cheng Y M 2008 Appl. Numer. Math. 58 884Google Scholar
[8] Chen L, Liu C, Ma H P, et al. 2014 Int. J. Appl. Mech. 6 1450009Google Scholar
[9] 李树忱, 程玉民 2004 力学学报 36 496Google Scholar
Li S C, Cheng Y M 2004 Acta Mech. Sin. 36 496Google Scholar
[10] Gao H F, Cheng Y M 2010 Int. J. Comput. Meth. 7 55Google Scholar
[11] 程玉民, 李九红 2005 54 4463Google Scholar
Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463Google Scholar
[12] Cheng Y M, Li J H 2006 Sci. China Ser. G 49 46
[13] 程玉民, 彭妙娟, 李九红 2005 力学学报 37 719Google Scholar
Cheng Y M, Peng M J, Li J H 2005 Acta Mech. Sin. 37 719Google Scholar
[14] Bai F N, Li D M, Wang J F, Cheng Y M 2012 Chin. Phys. B 21 020204Google Scholar
[15] Cheng Y M, Wang J F, Bai F N 2012 Chin. Phys. B 21 090203Google Scholar
[16] Cheng H, Peng M J, Cheng Y M 2017 Eng. Anal. Boundary Elem. 84 52Google Scholar
[17] Cheng H, Peng M J, Cheng Y M 2017 Int. J. Appl. Mech. 9 1750090Google Scholar
[18] Cheng H, Peng M J, Cheng Y M 2018 Int. J. Numer. Methods Eng. 114 321Google Scholar
[19] Cheng H, Peng M J, Cheng Y M 2018 Eng. Anal. Boundary Elem. 97 39Google Scholar
[20] 程玉民, 陈美娟 2003 力学学报 35 181Google Scholar
Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181Google Scholar
[21] Cheng Y M, Peng M J 2005 Sci. China Ser. G 48 641
[22] 秦义校, 程玉民 2006 55 3215Google Scholar
Qin Y X, Cheng Y M 2006 Acta Phys. Sin. 55 3215Google Scholar
[23] Peng M J, Cheng Y M 2009 Eng. Anal. Boundary Elem. 33 77Google Scholar
[24] Ren H P, Cheng Y M, Zhang W 2009 Chin. Phys. B 18 4065Google Scholar
[25] Ren H P, Cheng Y M, Zhang W 2010 Sci. China Ser. G 53 758Google Scholar
[26] Wang J F, Wang J F, Sun F X, Cheng Y M 2013 Int. J. Comput. Methods 10 1350043Google Scholar
[27] Zhang Z, Li D M, Cheng Y M, et al. 2012 Acta Mech. Sin. 28 808Google Scholar
[28] Zhang Z, Hao S Y, Liew K M, et al. 2013 Eng. Anal. Boundary Elem. 37 1576Google Scholar
[29] Zhang Z, Wang J F, Cheng Y M, et al. 2013 Sci. China Ser. G 56 1568Google Scholar
[30] Cheng R J, Liew K M 2012 Eng. Anal. Boundary Elem. 36 1322Google Scholar
[31] Cheng R J, Wei Q 2013 Chin. Phys. B 22 060209Google Scholar
[32] Peng M J, Li R X, Cheng Y M 2014 Eng. Anal. Boundary Elem. 40 104Google Scholar
[33] 蔡小杰, 彭妙娟, 程玉民 2018 中国科学: 物理学 力学 天文学 48 024701Google Scholar
Cai X J, Peng M J, Cheng Y M 2018 Sci. China: Phys. Mech. Astron. 48 024701Google Scholar
[34] Yu S Y, Peng M J, Cheng H, Cheng Y M 2019 Eng. Anal. Boundary Elem. 104 215Google Scholar
[35] 邹诗莹, 席伟成, 彭妙娟, 程玉民 2017 66 120204Google Scholar
Zou S Y, Xi W C, Peng M J, Cheng Y M 2017 Acta Phys. Sin. 66 120204Google Scholar
[36] Wu Y, Ma Y Q, Feng W, Cheng Y M 2017 Chin. Phys. B 26 080203Google Scholar
[37] Meng Z J, Cheng H, Ma L D, Cheng Y M 2018 Acta Mech. Sin. 34 462Google Scholar
[38] Meng Z J, Cheng H, Ma L D, Cheng Y M 2019 Sci. China Ser. G 62 040711Google Scholar
[39] Meng Z J, Cheng H, Ma L D, Cheng Y M 2019 Int. J. Numer. Methods Eng. 117 15Google Scholar
[40] Lancaster P, Salkauskas K 1981 Math. Comput. 37 141Google Scholar
[41] Ren H P, Cheng Y M 2011 Int. J. Appl. Mech. 3 735Google Scholar
[42] Ren H P, Cheng Y M 2012 Eng. Anal. Boundary Elem. 36 873Google Scholar
[43] Cheng Y M, Bai F N, Peng M J 2014 Appl. Math. Model. 38 5187Google Scholar
[44] Cheng Y M, Bai F N, Liu C, Peng M J 2016 Int. J. Comput. Mater. Sci. Eng. 5 1650023
[45] Deng Y J, Liu C, Peng M J, Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017Google Scholar
[46] Wang J F, Sun F X, Cheng Y M 2012 Chin. Phys. B 21 090204Google Scholar
[47] Sun F X, Wang J F, Cheng Y M 2013 Chin. Phys. B 22 120203Google Scholar
[48] Sun F X, Wang J F, Cheng Y M 2016 Int. J. Appl. Mech. 8 1650096Google Scholar
[49] Wang J F, Hao S Y, Cheng Y M 2014 Math. Probl. Eng. 2014 641592
[50] Wang J F, Sun F X, Cheng Y M, Huang A X 2014 Appl. Math. Comput. 245 321
[51] Sun F X, Wang J F, Cheng Y M 2015 Appl. Numer. Math. 98 79Google Scholar
[52] Liu F B, Cheng Y M 2018 Int. J. Comput. Mater. Sci. Eng. 7 1850023
[53] Liu F B, Cheng Y M 2018 Int. J. Appl. Mech. 10 1850047Google Scholar
[54] Liu F B, Wu Q, Cheng Y M 2019 Int. J. Appl. Mech. 11 1950006Google Scholar
[55] Yang H T, Liu Y 2003 Int. J. Solids Struct. 40 701Google Scholar
[56] Canelas A, Sensale B 2010 Eng. Anal. Boundary Elem. 34 845Google Scholar
[57] Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205Google Scholar
[58] 彭妙娟, 刘茜 2014 63 180203Google Scholar
Peng M J, Liu Q 2014 Acta Phys. Sin. 63 180203Google Scholar
Catalog
Metrics
- Abstract views: 7223
- PDF Downloads: 44
- Cited By: 0