Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Concept of waveguide invariant spectrum and algorithm for its extraction

Song Wen-Hua Wang Ning Gao Da-Zhi Wang Hao-Zhong Qu Ke

Citation:

Concept of waveguide invariant spectrum and algorithm for its extraction

Song Wen-Hua, Wang Ning, Gao Da-Zhi, Wang Hao-Zhong, Qu Ke
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • There are two kinds of definitions for waveguide invariant β. One is defined according to the striation slope of acoustic interference patterns, and the other is defined on the basis of dispersion characteristics of acoustic modes. The first definition is appropriate for engineering applications, while the second is suitable for theoretical analysis. However, the two definitions are not consistent with each other for a waveguide with thermoclines, because modal dispersion in such a waveguide can be very different for different modes and different frequencies. In such cases, the waveguide invariant defined according to modal dispersion can take many different values, which are referred to as the spectrum of waveguide invariant (β spectrum for short) in the paper. Each β spectrum can be related to some interference striation patterns with corresponding striation slopes. The sound field is composed of many modes, so the interference pattern is the summation of many components of different striation slopes and may be very complicated as a result of the diversity of β spectrum. In such a case one single β is not able to describe the complicated interference pattern adequately; instead multiple values of β spectrum are required. From the point of view of engineering application, however, the present β-extracting methods can only give one optimal value, and thus a lot of information is lost. In this paper an algorithm for doing so, called β spectrum separation technique, is proposed. By adopting the concept of integral projection used in digital image processing, the image of acoustic intensity is projected at different angles to separate out the striations of different slopes; and then fast Fourier transform (FFT) is applied to the projected curve in order to isolate striations of different spacing from each other. The values for β spectrum can be computed according to striation slopes, which are also mapped into the positions of their corresponding acoustic modal horizontal wavenumber differences in the wavenumber domain. The applicability of this algorithm for the extraction of β spectrum is tested and verified by simulation results and experiment data. It is shown that the algorithm can separate out each β spectrum of different intensity components from acoustic interference structure. The algorithm maps β spectrum into a two-dimensional plane thereby being able to suppress noise more effectively and work in the condition of low signal-to-noise ratio compared with the already-existing β-extracting algorithms.
      Corresponding author: Wang Ning, wangyu@public.qd.sd.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674294, 11374271) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310256).
    [1]

    Chuprov S D (Ed. By Brekhovskikh L M and Andreevoi I B) 1982 Ocean Acoustics: Current State (Moscow: Nauka) p71

    [2]

    Brekhovskikh L M, Lysanov Yu P 2002 Fundamentals of Ocean Acoustics (Moscow: AIP Press) pp143-148

    [3]

    Cockrell K L, Schmidt H 2011 J. Acoust. Soc. Am. 130 72

    [4]

    Turgut A, Orr M, Rouseff D 2010 J. Acoust. Soc. Am. 127 73

    [5]

    Cockrell K L, Schmidt H 2010 J. Acoust. Soc. Am. 127 2780

    [6]

    Thode A M, Kuperman W, Dspain G L, Hodgkiss W 2000 J. Acoust. Soc. Am. 107 278

    [7]

    Thode A M 2000 J. Acoust. Soc. Am. 108 1582

    [8]

    Zhao Z D, Wang N, Gao D Z, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [9]

    Yang T C 2003 J. Acoust. Soc. Am. 113 1342

    [10]

    Tao H, Krolik J L 2008 J. Acoust. Soc. Am. 123 1338

    [11]

    Su X X, Zhang R H, Li F H 2006 Acta Acustica 31 305 (in Chinese) [苏晓星, 张仁和,李风华 2006 声学学报 31 305]

    [12]

    Hodgkiss W S, Song H C, Kuperman W A 1999 J. Acoust. Soc. Am. 105 1597

    [13]

    Kim S, Kuperman W A, Hodgkiss W S, Song H C, Edelmann G F, Akal T 2003 J. Acoust. Soc. Am. 114 145

    [14]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [15]

    Potty G, Miller J, Lynch J, Smith K 2000 J. Acoust. Soc. Am. 108 973

    [16]

    Bonnel J, Gervaise C, Nicolas B, Mars J 2012 J. Acoust. Soc. Am. 131 119

    [17]

    Heaney K D 2004 IEEE J. Ocean. Eng. 29 88

    [18]

    Ren Q Y, Hermand J P 2013 J. Acoust. Soc. Am. 133 82

    [19]

    Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese) [鹿力成, 马力 2015 64 024305]

    [20]

    Bonnel J, Le T G, Nicolas B, Jéróme I M 2013 IEEE Signal Proc. Mag. 30 120

    [21]

    Hough P V C 1962 US Patent No. 3069654

    [22]

    Deans S R 1983 The Radon Transform and Some of Its Applications (New York: Wiley)

    [23]

    Rouseff D 2001 Waves in Random Media 11 377

    [24]

    Rouseff D, Zurk L M 2011 J. Acoust. Soc. Am. 130 76

    [25]

    Zhao Z D, Wu J R, Shang E C 2015 J. Acoust. Soc. Am. 138 223.

    [26]

    Zhang W Z, Chen Q, Du D, Sun Z G 2005 J. Tsinghua Univ. (Sci. & Tech.) 45 1446 (in Chinese) [张文增, 陈强, 都东, 孙振国 2005 清华大学学报 45 1446]

    [27]

    Liu J, Saito Y, Kong X H, Wang H, Wen C, Yang Z G, Nakashima R 2010 Marine Geology 278 54

    [28]

    Zhang J Q 2012 Ph. D. Dissertation (Qingdao: Ocean University of China) (in Chinese) [张军强 2012 博士学位论文 (青岛: 中国海洋大学)]

  • [1]

    Chuprov S D (Ed. By Brekhovskikh L M and Andreevoi I B) 1982 Ocean Acoustics: Current State (Moscow: Nauka) p71

    [2]

    Brekhovskikh L M, Lysanov Yu P 2002 Fundamentals of Ocean Acoustics (Moscow: AIP Press) pp143-148

    [3]

    Cockrell K L, Schmidt H 2011 J. Acoust. Soc. Am. 130 72

    [4]

    Turgut A, Orr M, Rouseff D 2010 J. Acoust. Soc. Am. 127 73

    [5]

    Cockrell K L, Schmidt H 2010 J. Acoust. Soc. Am. 127 2780

    [6]

    Thode A M, Kuperman W, Dspain G L, Hodgkiss W 2000 J. Acoust. Soc. Am. 107 278

    [7]

    Thode A M 2000 J. Acoust. Soc. Am. 108 1582

    [8]

    Zhao Z D, Wang N, Gao D Z, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [9]

    Yang T C 2003 J. Acoust. Soc. Am. 113 1342

    [10]

    Tao H, Krolik J L 2008 J. Acoust. Soc. Am. 123 1338

    [11]

    Su X X, Zhang R H, Li F H 2006 Acta Acustica 31 305 (in Chinese) [苏晓星, 张仁和,李风华 2006 声学学报 31 305]

    [12]

    Hodgkiss W S, Song H C, Kuperman W A 1999 J. Acoust. Soc. Am. 105 1597

    [13]

    Kim S, Kuperman W A, Hodgkiss W S, Song H C, Edelmann G F, Akal T 2003 J. Acoust. Soc. Am. 114 145

    [14]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [15]

    Potty G, Miller J, Lynch J, Smith K 2000 J. Acoust. Soc. Am. 108 973

    [16]

    Bonnel J, Gervaise C, Nicolas B, Mars J 2012 J. Acoust. Soc. Am. 131 119

    [17]

    Heaney K D 2004 IEEE J. Ocean. Eng. 29 88

    [18]

    Ren Q Y, Hermand J P 2013 J. Acoust. Soc. Am. 133 82

    [19]

    Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese) [鹿力成, 马力 2015 64 024305]

    [20]

    Bonnel J, Le T G, Nicolas B, Jéróme I M 2013 IEEE Signal Proc. Mag. 30 120

    [21]

    Hough P V C 1962 US Patent No. 3069654

    [22]

    Deans S R 1983 The Radon Transform and Some of Its Applications (New York: Wiley)

    [23]

    Rouseff D 2001 Waves in Random Media 11 377

    [24]

    Rouseff D, Zurk L M 2011 J. Acoust. Soc. Am. 130 76

    [25]

    Zhao Z D, Wu J R, Shang E C 2015 J. Acoust. Soc. Am. 138 223.

    [26]

    Zhang W Z, Chen Q, Du D, Sun Z G 2005 J. Tsinghua Univ. (Sci. & Tech.) 45 1446 (in Chinese) [张文增, 陈强, 都东, 孙振国 2005 清华大学学报 45 1446]

    [27]

    Liu J, Saito Y, Kong X H, Wang H, Wen C, Yang Z G, Nakashima R 2010 Marine Geology 278 54

    [28]

    Zhang J Q 2012 Ph. D. Dissertation (Qingdao: Ocean University of China) (in Chinese) [张军强 2012 博士学位论文 (青岛: 中国海洋大学)]

  • [1] Wang Shuai, Li Xi, Yao Xing-Can. Ultracold atomic imaging based on enhanced fringe removal method. Acta Physica Sinica, 2024, 73(14): 146701. doi: 10.7498/aps.73.20240570
    [2] Li Yong-Fei, Guo Rui-Ming, Zhao Hang-Fang. Sparse reconstruction of acoustic interference fringes in shallow water and internal wave environment. Acta Physica Sinica, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [3] Yuan Yong-Hao, Xue Qi-Kun, Li Wei. Stripe phase in high-Tc superconductor FeSe/SrTiO3. Acta Physica Sinica, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [4] Li Jin, Yang Pin, Yang Zhi-Wen, Zhang Xing, Liu Shen-Ye, Dong Jian-Jun, Yang Zheng-Hua, Ren Kuan, Li Ying-Jie, Zhang Lu, Hu Xin. X-ray streak camera tube with two photocathodes. Acta Physica Sinica, 2022, 71(23): 233201. doi: 10.7498/aps.71.20221194
    [5] Tian Li-Ping, Li Li-Li, Wen Wen-Long, Wang Xing, Chen Ping, Lu Yu, Wang Jun-Feng, Zhao Wei, Tian Jin-Shou. Numerical calculation and experimental study on the small-size streak tube. Acta Physica Sinica, 2018, 67(18): 188501. doi: 10.7498/aps.67.20180643
    [6] Hui Dan-Dan, Tian Jin-Shou, Lu Yu, Wang Jun-Feng, Wen Wen-Long, Liang Ling-Liang, Chen Lin. Temporal distortion analysis of the streak tube. Acta Physica Sinica, 2016, 65(15): 158502. doi: 10.7498/aps.65.158502
    [7] Hui Dan-Dan, Tian Jin-Shou, Wang Jun-Feng, Lu Yu, Wen Wen-Long, Xu Xiang-Yan. Dynamic properties of a small-size streak tube. Acta Physica Sinica, 2016, 65(1): 018502. doi: 10.7498/aps.65.018502
    [8] Zhu Min, Tian Jin-Shou, Wen Wen-Long, Wang Jun-Feng, Cao Xi-Bin, Lu Yu, Xu Xiang-Yan, Sai Xiao-Feng, Liu Hu-Lin, Wang Xing, Li Wei-Hua. Research on large dynamic range streak camera based on electron-bombarded CCD. Acta Physica Sinica, 2015, 64(9): 098501. doi: 10.7498/aps.64.098501
    [9] Song Wen-Hua, Hu Tao, Guo Sheng-Ming, Ma Li. Time-varying characteristics of the waveguide invariant under internal wave condition in the shallow water area. Acta Physica Sinica, 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [10] Zeng Peng, Yuan Zheng, Deng Bo, Yuan Yong-Teng, Li Zhi-Chao, Liu Shen-Ye, Zhao Yi-Dong, Hong Cai-Hao, Zheng Lei, Cui Ming-Qi. Spectral response calibration of Au and CsI transmission photocathodes of X-ray streak camera in a 605500 eV photon energy region. Acta Physica Sinica, 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [11] Tang Deng-Bin, Liu Chao-Qun, Chen Lin. New properties of streamwise streaks in transitional boundary layers. Acta Physica Sinica, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [12] Zhang Wen-Tao, Zhu Bao-Hua. A novel method to realize the nanometer scale grid deposition. Acta Physica Sinica, 2010, 59(8): 5392-5396. doi: 10.7498/aps.59.5392
    [13] Li Ti-Jun. Integration over entangled state projective operators. Acta Physica Sinica, 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665
    [14] Lei Liang, Wen Jin-Hui, Jiao Zhong-Xing, Lai Tian-Shu, Lin Wei-Zhu. The amplitude and phase measurements of femtosecond pulses using fringe-free SPIDER. Acta Physica Sinica, 2008, 57(1): 307-312. doi: 10.7498/aps.57.307
    [15] Mei Feng-Xiang, Cai Jian-Le. Integral invariants of a generalized Birkhoff system. Acta Physica Sinica, 2008, 57(8): 4657-4659. doi: 10.7498/aps.57.4657
    [16] Xie Xu-Dong, Wang Xiao, Zhu Qi-Hua, Zeng Xiao-Ming, Wang Feng-Rui, Huang Xiao-Jun, Zhou Kai-Nan, Wang Fang, Jiang Dong-Bin, Huang Zheng, Sun Li, Liu Hua, Wang Xiao-Dong, Deng Wu, Guo Yi, Zhang Xiao-Mi. High energy chirped pulse characteristics observed by spectral-resolved streak camera. Acta Physica Sinica, 2007, 56(11): 6463-6467. doi: 10.7498/aps.56.6463
    [17] Lei Liang, Wen Jin-Hui, Jiao Zhong-Xing, Shou Qian, Wu Yu, Liu Lu-Ning, Lai Tian-Shu, Lin Wei-Zhu. Fringe-free spectral phase interferometry for direct electric-field reconstruction. Acta Physica Sinica, 2006, 55(1): 244-248. doi: 10.7498/aps.55.244
    [18] Li Yang-Gang, Wang Xiao-Sheng, She Wei-Long, Jiang De-Sheng. Y-splitting of dark stripe in photoisomerization polymers. Acta Physica Sinica, 2005, 54(12): 5663-5670. doi: 10.7498/aps.54.5663
    [19] Luo Shao-Kai, Lu Yi-Bing, Zhou Qiang, Wang Ying-De, Oyang Shi. . Acta Physica Sinica, 2002, 51(9): 1913-1917. doi: 10.7498/aps.51.1913
    [20] LI MING, MAI ZHEN-HONG, CUI SHU-PAN. CHARACTERIZATION OF MICRO-DEFECTS IN SILICON SINGLE CRYSTALS BY ANALYZING THE PENDELL?SUNG FRINGES. Acta Physica Sinica, 1994, 43(1): 78-83. doi: 10.7498/aps.43.78
Metrics
  • Abstract views:  8035
  • PDF Downloads:  250
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2016
  • Accepted Date:  19 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map