-
应用于惯性约束核聚变和非扫描式激光雷达等的条纹变像管要求具有较大的探测面积,条纹变像管的探测面积越大,其时间畸变就越大,从而影响条纹相机的探测精度,且会导致荧光屏上成像畸变. 本文计算了条纹变像管内部的电场分布,并追踪电子运行轨迹,对条纹变像管的时间畸变进行了分析. 结果表明:造成条纹变像管时间畸变较大的区域是阴极到偏转板前的部分;其主要影响因素是阴极曲率半径,且阴极曲率半径存在一个最佳值使得条纹变像管的时间畸变最小,大于该最佳值,条纹变像管会产生正的时间畸变,反之,条纹变像管会产生负的时间畸变;时间畸变的绝对值随着光电子从阴极发射的初始高度的增大而增大;光电子初始能量对条纹变像管的时间畸变的影响很小. 同时,模拟了不同阴极曲率半径下由于时间畸变不同导致的动态扫描狭缝像的弯曲情况,时间畸变越小,狭缝像弯曲程度越小.Streak cameras applied to inertial confinement fusion research and flashless imaging lidar require large working areas. However, the larger the working area, the bigger the temporal distortion is. And the temporal distortion has a great influence on the detecting precision of the streak camera, resulting in an image distortion on the screen. Yet previous streak camera design work emphasized shorter time resolution and higher special resolution with paying less attention to the temporal distortion extent. Key factors that may affect the temporal distortion are thoroughly analyzed in this paper. We calculate the electric field of a small-size streak tube with the aid of the Computer Simulation Technology Particle Studio software which is a three-dimensional electromagnetic simulation software based on finite integration technology. Axial electric field distributions at different distances to the axis of the small-size streak tube are displayed. The electron trajectories launched from different points on photocathode of the streak tube are tracked through interpolating pre-calculated electromagnetic field to the particle position. It is known that curved photocathode can reduce the temporal distortion, so we calculate the temporal distortions of streak tubes whose radii of curvature of the photocathode are 30 mm, 35 mm, 40 mm, 45 mm, 50 mm, and 55 mm respectively to ascertain how the curvature influences the temporal distortion. The results show that the temporal distortion is mainly produced in the photocathode-to-deflector region, and it is negligible in the equipotential region. Also, bigger radius of curvature of the photocathode leads to a positive temporal distortion, and smaller one leads to a negative temporal distortion. And the absolute value of the temporal distortion increases with the increase of the slit length. The small-size streak tube whose radius of curvature of the photocathode is 40 mm owns the smallest temporal distortion. We also calculate the temporal distortions of electrons launched from the different positions of the photocathode with different initial energies, and the initial energy has little influence on the temporal distortion. To sum up, the dominating factor that produces the temporal distortion is the curvature of the photocathode. The slit image under a ramp sweeping voltage on screen is curved due to the temporal distortion. And the bigger the temporal distortion, the greater the curvature of the slit image is. Besides, a linear relation between the temporal distortion and deflection of the slit image is displayed. The spatial resolutions of the streak tubes with the radii of curvature of the photocathode 30 mm, 40 mm, 50 mm are calculated respectively. And the small-size streak tube whose radius of curvature of the photocathode is 30 mm has the highest spatial resolution. The radius of curvature of the streak tube photocathode should be carefully selected according to actual requirements for the streak camera. Through the analysis we provide a significant guidance for streak tube design.
[1] Takahashi A, Nishizawa M, Inagaki Y, Koishi M, Kinoshita K 1994 Proceedings of SPIE on Generation, Amplification, and Measurement of Ultrashort Laser Pulses Los Angeles, CA, January 23, 1994 p275
[2] Losovoi V, Ushkov I, Prokhorenko E, Schelev M, Smirnov A 2003 Proceedings of SPIE of 25th International Congress on High-Speed Photography and Photonics Beaune, Finland, September 29, 2002 p297
[3] Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502 (in Chinese) [惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 65 018502]
[4] Hinrichs C K 1985 Proceedings of SPIE of 16th Intl Congress on High Speed Photography and Photonics Strasbourg, France, August 27, 1984 p36
[5] Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102
[6] Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501 (in Chinese) [朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 64 098501]
[7] Mens A, Adolf A, Gontier D, Goulmy C, Jaanimagi P A, Quine C, Rebuffie C J, Segre J, Verrecchia R 1997 Proceedings of SPIE of 22nd International Congress on High-Speed Photography and Photonics Santa Fe, NM, October 27 1996 p139
[8] Chen G f, Chen Z R, Wang X H, Ren Y L 1985 Proceedings of SPIE of 16th Intl Congress on High Speed Photography and Photonics Strasbourg, France, August 27, 1985 p672
[9] Qu J L, Yang Q L, Niu H B, Song Z X {1997 High Power Laser and Particle Beams 9 114 (in Chinese) [屈军乐, 杨勤劳, 牛憨笨,宋宗贤 1997 强激光与粒子束 9 114]
[10] Yi R Q, Yang G H, Cui Y L, Du H B, Wei M X, Dong J J, Zhao Y D, Cui M Q, Zheng L 2006 Acta Phys. Sin. 55 6287 (in Chinese) [易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑雷 2006 55 6287]
[11] Liu J, Wang Q, Li S, Cheng Y, Wei J 2009 Laser Phys. 19 115
[12] Wei J S, Wang Q, Sun J F, Gao J 2010 J. Russ. Laser Res. 31 307
[13] Sun J F, Liu J B, Wang Q 2013 Optik 124 204
[14] Sun J F, Wang T J, Wang X F, Wei J S, Wang Q 2013 Optik 124 2674
[15] Niu H B 1983 Proceedings of SPIE of 15th Intl Congress on High Speed Photography and Photonics San Diego, August 21, 1982 p231
[16] Ageeva N V, Andreev S V, Degtyareva V P, Greenfield D E, Ivanova S R, Kaverin A M, Kulechenkova T P, Levina G P, Makushina V A, Monastyrskiy M A, Polikarkina N D, Schelev M Y, Semichastnova Z M, Skaballanovich T A, Sokolov V E 2009 Proceedings of SPIE of 28th International Congress on High-Speed Imaging and Photonics Canberra, Australia, November 9, 2008 p71261B
[17] Weiland T 1996 Int. J. Numer. Model 9 295
[18] Pei L C, Zhang X Z 1980 Monte Carlo Method and the Application in the Transport of Particles (Beijing, Science Press) pp100-114 (in Chinese) [裴鹿呈, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第100-114页]
-
[1] Takahashi A, Nishizawa M, Inagaki Y, Koishi M, Kinoshita K 1994 Proceedings of SPIE on Generation, Amplification, and Measurement of Ultrashort Laser Pulses Los Angeles, CA, January 23, 1994 p275
[2] Losovoi V, Ushkov I, Prokhorenko E, Schelev M, Smirnov A 2003 Proceedings of SPIE of 25th International Congress on High-Speed Photography and Photonics Beaune, Finland, September 29, 2002 p297
[3] Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502 (in Chinese) [惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 65 018502]
[4] Hinrichs C K 1985 Proceedings of SPIE of 16th Intl Congress on High Speed Photography and Photonics Strasbourg, France, August 27, 1984 p36
[5] Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102
[6] Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501 (in Chinese) [朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 64 098501]
[7] Mens A, Adolf A, Gontier D, Goulmy C, Jaanimagi P A, Quine C, Rebuffie C J, Segre J, Verrecchia R 1997 Proceedings of SPIE of 22nd International Congress on High-Speed Photography and Photonics Santa Fe, NM, October 27 1996 p139
[8] Chen G f, Chen Z R, Wang X H, Ren Y L 1985 Proceedings of SPIE of 16th Intl Congress on High Speed Photography and Photonics Strasbourg, France, August 27, 1985 p672
[9] Qu J L, Yang Q L, Niu H B, Song Z X {1997 High Power Laser and Particle Beams 9 114 (in Chinese) [屈军乐, 杨勤劳, 牛憨笨,宋宗贤 1997 强激光与粒子束 9 114]
[10] Yi R Q, Yang G H, Cui Y L, Du H B, Wei M X, Dong J J, Zhao Y D, Cui M Q, Zheng L 2006 Acta Phys. Sin. 55 6287 (in Chinese) [易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑雷 2006 55 6287]
[11] Liu J, Wang Q, Li S, Cheng Y, Wei J 2009 Laser Phys. 19 115
[12] Wei J S, Wang Q, Sun J F, Gao J 2010 J. Russ. Laser Res. 31 307
[13] Sun J F, Liu J B, Wang Q 2013 Optik 124 204
[14] Sun J F, Wang T J, Wang X F, Wei J S, Wang Q 2013 Optik 124 2674
[15] Niu H B 1983 Proceedings of SPIE of 15th Intl Congress on High Speed Photography and Photonics San Diego, August 21, 1982 p231
[16] Ageeva N V, Andreev S V, Degtyareva V P, Greenfield D E, Ivanova S R, Kaverin A M, Kulechenkova T P, Levina G P, Makushina V A, Monastyrskiy M A, Polikarkina N D, Schelev M Y, Semichastnova Z M, Skaballanovich T A, Sokolov V E 2009 Proceedings of SPIE of 28th International Congress on High-Speed Imaging and Photonics Canberra, Australia, November 9, 2008 p71261B
[17] Weiland T 1996 Int. J. Numer. Model 9 295
[18] Pei L C, Zhang X Z 1980 Monte Carlo Method and the Application in the Transport of Particles (Beijing, Science Press) pp100-114 (in Chinese) [裴鹿呈, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第100-114页]
计量
- 文章访问数: 6867
- PDF下载量: 212
- 被引次数: 0