-
In this paper, Fe-doped lithium niobate crystals with different Li compositions are prepared. The composition and temperature dependence of the light-induced scattering in Fe-doped lithium niobate are studied. The results show that the crystals with the compositions lower than 49.0 mol% suffer from the serious light-induced scattering, but when the composition increases to 49.3 mol% the light-induced scattering is suppressed significantly, in particular at a composition of 49.8 mol% the light-induced scattering disappears completely. It is also found that the light-induced scattering of the crystals with lower compositions can be suppressed completely by elevating the temperature to 150 ℃. However the temperature for the complete suppression of the light-induced scattering in the crystal with a composition of 49.3 mol% is only 80 ℃. Based on these results, it is suggested that a critical Li composition may exist in a range from 48.9 mol% to 49.3 mol% and beyond this composition the suppression and temperature dependence of the light-induced scattering will change significantly.
-
Keywords:
- lithium niobate /
- photorefractive /
- impurity defects
[1] Günter P, Huignard J P 1989 Photorefractive Materials and Their Applications Vols. I and II (Springer-Verlag: Heidelberg)
[2] Guo Y, Liao Y, Cao L, Liu G, He Q, Jin G 2004 Opt. Express 12 5556
[3] Kitamura K, Furukawa Y, Ji Y, Zgonik M, Medrano C, Montemezzani G, Günter P 1997 J. Appl. Phys. 82 1006
[4] Furukawa Y, Kitamura K, Ji Y, Montemezzani G, Zgonik M, Medrano C, Günter P 1997 Opt. Lett. 22 501
[5] Zhang T, Wang B, Fang S Q, Ma D C 2005 J. Phys. D 38 2013
[6] Liu H, Xie X, Kong Y, Yan W, Li X, Shi L, Xu J, Zhang G 2006 Opt. Mater. 28 212
[7] Peng B G, Chen F, Tan Y, Kip D 2011 Opt. Mater. 33 773
[8] Zheng W, Zhang N D, Zhao L C, Xu Y H 2004 Mater. Chem. Phys. 84 7
[9] Luo S H, Wu F J, Wang J, Sun X D 2011 Opt. Commun. 284 4452
[10] Sun X D, Shi H X, Luo S H, Jiang Y Y, Meng Q X 2010 Cryst. Res. Tech. 45 249
[11] Sun X D, Luo S H, Shi H X, Meng Q X, Jiang Y Y 2009 Opt. Commun. 282 3149
[12] Xu C, Yang C H, Dai L, Sun L A, Xu Y H, Cao L C 2011 J. Alloys Compd. 509 4167
[13] Jundt D H, Fejer M M, Byer R L 1990 J. Quantum Electr. 26 135
[14] Wöhlecke M, Corradi G, Betzler K 1996 Appl. Phys. B 63 323
[15] Kamber N Y, Xu J, Mikha S M, Zhang G, Liu S, Zhang G 2000 Opt. Commun. 176 91
-
[1] Günter P, Huignard J P 1989 Photorefractive Materials and Their Applications Vols. I and II (Springer-Verlag: Heidelberg)
[2] Guo Y, Liao Y, Cao L, Liu G, He Q, Jin G 2004 Opt. Express 12 5556
[3] Kitamura K, Furukawa Y, Ji Y, Zgonik M, Medrano C, Montemezzani G, Günter P 1997 J. Appl. Phys. 82 1006
[4] Furukawa Y, Kitamura K, Ji Y, Montemezzani G, Zgonik M, Medrano C, Günter P 1997 Opt. Lett. 22 501
[5] Zhang T, Wang B, Fang S Q, Ma D C 2005 J. Phys. D 38 2013
[6] Liu H, Xie X, Kong Y, Yan W, Li X, Shi L, Xu J, Zhang G 2006 Opt. Mater. 28 212
[7] Peng B G, Chen F, Tan Y, Kip D 2011 Opt. Mater. 33 773
[8] Zheng W, Zhang N D, Zhao L C, Xu Y H 2004 Mater. Chem. Phys. 84 7
[9] Luo S H, Wu F J, Wang J, Sun X D 2011 Opt. Commun. 284 4452
[10] Sun X D, Shi H X, Luo S H, Jiang Y Y, Meng Q X 2010 Cryst. Res. Tech. 45 249
[11] Sun X D, Luo S H, Shi H X, Meng Q X, Jiang Y Y 2009 Opt. Commun. 282 3149
[12] Xu C, Yang C H, Dai L, Sun L A, Xu Y H, Cao L C 2011 J. Alloys Compd. 509 4167
[13] Jundt D H, Fejer M M, Byer R L 1990 J. Quantum Electr. 26 135
[14] Wöhlecke M, Corradi G, Betzler K 1996 Appl. Phys. B 63 323
[15] Kamber N Y, Xu J, Mikha S M, Zhang G, Liu S, Zhang G 2000 Opt. Commun. 176 91
Catalog
Metrics
- Abstract views: 8464
- PDF Downloads: 434
- Cited By: 0