Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extractraction of non-stationary harmonic from chaotic background based on synchrosqueezed wavelet transform

Wang Xiang-Li Wang Bin Wang Wen-Bo Yu Min

Citation:

Extractraction of non-stationary harmonic from chaotic background based on synchrosqueezed wavelet transform

Wang Xiang-Li, Wang Bin, Wang Wen-Bo, Yu Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The signal detection in chaotic background has gradually become one of the research focuses in recent years. Previous research showed that the measured signals were often unavoidable to be contaminated by the chaotic noise, such as the radar signal detection from sea clutter wave,signal source extraction from chaotic secure communication and ECG/EEG abnormal signal detection,etc.At present,there are two methods to detect the target signal from the chaotic background.One is to detect the target signals by using the difference in geometric structure between the chaotic signal and the target signal,and the other is to regard the chaotic signal as the noise,and the target signal is extracted from the chaotic background by the time frequency analysis method,such as wavelet transform and empirical mode decomposition. The first kind of method can detect the target signal well,but it needs to characterize the chaotic system and reconstruct the phase space,which is difficult in the practical applications.The second kind of method does not need to reconstruct the chaotic phase space and can effectively extract the target signal from the chaotic background.However,the wavelet transform lacks adaption and how to select the optimal wavelet basis and decomposition layers is a difficult problem.In the empirical mode decomposition there exists the mode mixing that is very sensitive to the noise.The synchrosqueezed wavelet transform (SST) effectively improves the mixing of mode by compressing the continuous wavelet coefficients in the frequency direction,but also it has good robustness to noise.Therefore,the SST can extract the harmonic signal well from the chaotic background.In the present algorithm of abstracting harmonic signal from chaotic background by SST,the harmonic signals are extracted by using single accumulation frequency range SST (SAFR-SST) based on wavelet ridge detection.If the target signal is stable harmonic signal,whose frequency does not change with time,the SAFR-SST method can have a high abstraction precision.But if the target signal is the non-stable harmonic signal whose frequency changes with time,the SAFR-SST method is not enough nor can obtain high abstraction precision.In order to overcome the shortcomings of the SST in extracting the non-stationary harmonic signal from the chaotic background, an improved SST extracting method is proposed which is based on the adaptive optimal cumulative frequency range. Firstly,the formulas of calculating the adaptive cumulative frequency range in SST extraction are deduced according to the relationship between the wavelet coefficient of non-stationary harmonic and the interval of supporting wavelet bases.Then,the optimal values of the parameters in the adaptive cumulative frequency range formula are calculated by the minimum energy error criterion according to the integrity and orthogonality of the intrinsic mode types function.Finally,the SST adaptive extraction of the non-stationary harmonic signal is realized according to the SST inverse transform.In experiment,the different types of non-stationary harmonics are extracted from the Lorenz and Duffing chaotic background.The experimental results show that the proposed method can effectively extract the non-stationary harmonic from the noisy chaotic background.Compared with the classical SST method with single cumulative frequency range,the proposed method has good performance in both mean square error and correlation coefficient.And when the chaotic background contains different-intenity Gauss white noises,the proposed method can also effectively abstract the non-stationary harmonic from the chaos and noise interference.So,the proposed method has a good practice value.
      Corresponding author: Wang Xiang-Li, wwb0178@163.com
    • Funds: Project supported by the National Natural Science Fund of China (Grant No. 61473213), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2015CFB424, 2015CFB602), and the Hubei Key Laboratory of Transportation Internet of Things Foundation, China (Grant No. 2015III015-B02).
    [1]

    Aghababa M P 2012 Chin. Phys. B 21 100505

    [2]

    Hu J F, Zhang Y X, Li H Y, Yang M, Xia W, Li J 2015 Acta Phys. Sin. 64 220504 (in Chinese)[胡进峰, 张亚璇, 李会勇, 杨淼, 夏威, 李军2015 64 220504]

    [3]

    Arunprakash J, Reddy G R, Prasad N S S R K 2016 Procedia Technology 24 988

    [4]

    Xing H Y, Zhang Q, Xu W 2015 Acta Phys. Sin. 64 040506 (in Chinese)[行鸿彦, 张强, 徐伟2015 64 040506]

    [5]

    Wang E F, Wang D Q, Ding Q 2011 J. Commun. 32 60 (in Chinese)[王尔馥, 王冬青, 丁群2011通信学报32 60]

    [6]

    Li H T, Zhu S L, Qi C H, Gao M X, Wang G Z 2013 Adv. Mater. Res. 73 4 3145

    [7]

    Leung H, Huang X P 1996 IEEE Trans. Signal Process. 44 2456

    [8]

    He G T, Luo M K 2012 Chin. Phys. Lett. 29 060204

    [9]

    Guan J, Liu N B, Huang Y, He Y 2012 IET Radar Sonar Nav. 6 293

    [10]

    Li H C, Zhang J S 2005 Chin. Phys. Lett. 22 2776

    [11]

    Xu Y C, Qu X D, Li Z X 2015 Chin. Phys. B 24 034301

    [12]

    Huang X G, Xu J X 2001 Int. J. Bifurcation Chaos 11 561

    [13]

    Wang G G, Wang S X 2006 J. Jilin Univ. (Sci. Ed.) 44 439(in Chinese)[王国光, 王树勋2006吉林大学学报(理学版) 44 439]

    [14]

    Wang X L, Wang B, Wang W B, Y M, Wang Z, Chang Y C 2015 Acta Phys. Sin. 64 100201 (in Chinese)[汪祥莉, 王斌, 王文波, 喻敏, 王震, 常毓禅2015 64 100201]

    [15]

    Huang N E, Shen Z, Long S R 1998 Proc. R. Soc. London, Ser. A 454 903

    [16]

    Daubechies I, Lu J F, Wu H T 2011 Appl. Comput. Harmon. Anal. 2 243

    [17]

    Gaurav T, Eugene B, Neven S F, Wu H T 2012 Sign. Process. 93 1079

    [18]

    Sylvain M, Thomas O, Stephen M 2012 IEEE Trans. Signal. Process. 60 5787

    [19]

    Wang Z C, Ren W X, Liu J L 2013 J. Sound Vib. 332 6016

  • [1]

    Aghababa M P 2012 Chin. Phys. B 21 100505

    [2]

    Hu J F, Zhang Y X, Li H Y, Yang M, Xia W, Li J 2015 Acta Phys. Sin. 64 220504 (in Chinese)[胡进峰, 张亚璇, 李会勇, 杨淼, 夏威, 李军2015 64 220504]

    [3]

    Arunprakash J, Reddy G R, Prasad N S S R K 2016 Procedia Technology 24 988

    [4]

    Xing H Y, Zhang Q, Xu W 2015 Acta Phys. Sin. 64 040506 (in Chinese)[行鸿彦, 张强, 徐伟2015 64 040506]

    [5]

    Wang E F, Wang D Q, Ding Q 2011 J. Commun. 32 60 (in Chinese)[王尔馥, 王冬青, 丁群2011通信学报32 60]

    [6]

    Li H T, Zhu S L, Qi C H, Gao M X, Wang G Z 2013 Adv. Mater. Res. 73 4 3145

    [7]

    Leung H, Huang X P 1996 IEEE Trans. Signal Process. 44 2456

    [8]

    He G T, Luo M K 2012 Chin. Phys. Lett. 29 060204

    [9]

    Guan J, Liu N B, Huang Y, He Y 2012 IET Radar Sonar Nav. 6 293

    [10]

    Li H C, Zhang J S 2005 Chin. Phys. Lett. 22 2776

    [11]

    Xu Y C, Qu X D, Li Z X 2015 Chin. Phys. B 24 034301

    [12]

    Huang X G, Xu J X 2001 Int. J. Bifurcation Chaos 11 561

    [13]

    Wang G G, Wang S X 2006 J. Jilin Univ. (Sci. Ed.) 44 439(in Chinese)[王国光, 王树勋2006吉林大学学报(理学版) 44 439]

    [14]

    Wang X L, Wang B, Wang W B, Y M, Wang Z, Chang Y C 2015 Acta Phys. Sin. 64 100201 (in Chinese)[汪祥莉, 王斌, 王文波, 喻敏, 王震, 常毓禅2015 64 100201]

    [15]

    Huang N E, Shen Z, Long S R 1998 Proc. R. Soc. London, Ser. A 454 903

    [16]

    Daubechies I, Lu J F, Wu H T 2011 Appl. Comput. Harmon. Anal. 2 243

    [17]

    Gaurav T, Eugene B, Neven S F, Wu H T 2012 Sign. Process. 93 1079

    [18]

    Sylvain M, Thomas O, Stephen M 2012 IEEE Trans. Signal. Process. 60 5787

    [19]

    Wang Z C, Ren W X, Liu J L 2013 J. Sound Vib. 332 6016

  • [1] Xu Zi-Fei, Miao Wei-Pao, Li Chun, Jin Jiang-Tao, Li Shu-Jun. Nonlinear feature extraction and chaos analysis of flow field. Acta Physica Sinica, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [2] Hu Jin-Feng, Zhang Ya-Xuan, Li Hui-Yong, Yang Miao, Xia Wei, Li Jun. Harmonic signal detection method from strong chaotic background based on optimal filter. Acta Physica Sinica, 2015, 64(22): 220504. doi: 10.7498/aps.64.220504
    [3] Wang Xiang-Li, Wang Bin, Wang Wen-Bo, Yu Min, Wang Zhen, Chang Yu-Chan. Harmonic signal extraction from chaotic interference based on synchrosqueezed wavelet transform. Acta Physica Sinica, 2015, 64(10): 100201. doi: 10.7498/aps.64.100201
    [4] Hu Wen, Li Jun-Ping, Zhang Gong, Liu Wen-Bo, Zhao Guang-Hao. The chaotic self-FM system and its FM code coupled synchronization. Acta Physica Sinica, 2012, 61(1): 010504. doi: 10.7498/aps.61.010504
    [5] Liu Dan-Yang, Wang Ya-Wei, Wang Xian, He Kun, Zhang Xing-Juan, Yang Chun-Xin. Chaotic property analysis of pressure fluctuation for oxygen phase change heat exchanger. Acta Physica Sinica, 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [6] Xue Wei, Guo Yan-Ling, Chen Zeng-Qiang. Analysis of chaos and circuit implementation of a permanent magnet synchronous motor. Acta Physica Sinica, 2009, 58(12): 8146-8151. doi: 10.7498/aps.58.8146
    [7] Han Min, Niu Zhi-Qiang, Han Bing. A new approach to synchronization between two different chaotic systems with parametric perturbation. Acta Physica Sinica, 2008, 57(11): 6824-6829. doi: 10.7498/aps.57.6824
    [8] Lu Wei-Guo, Zhou Luo-Wei, Luo Quan-Ming, Du Xiong. Time-delayed feedback control of chaos in BOOST converter and its optimization. Acta Physica Sinica, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [9] Sang Xin-Zhu, Yu Chong-Xiu, Wang Kui-Ru. Experimental investigation on wavelength-tunable chaos generation and synchronization. Acta Physica Sinica, 2006, 55(11): 5728-5732. doi: 10.7498/aps.55.5728
    [10] Yan Sen-Lin, Wang Sheng-Qian. Theoretical study of cascade synchronization in chaotic lasers and chaotic repeater. Acta Physica Sinica, 2006, 55(4): 1687-1695. doi: 10.7498/aps.55.1687
    [11] Yu Hong-Jie, Liu Yan-Zhu. Synchronization of symmetrically nonlinear-coupled chaotic systems. Acta Physica Sinica, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [12] Tao Chao-Hai, Lu Jun-An. Speed feedback synchronization of a chaotic system. Acta Physica Sinica, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [13] Li Guo-Hui. Analytical design of the observer-based chaotic generalized synchronization. Acta Physica Sinica, 2004, 53(4): 999-1002. doi: 10.7498/aps.53.999
    [14] Wei Rong, Wang Xing-Yu. An adaptive H∞ synchronization approach for continuous-time chaotic systems. Acta Physica Sinica, 2004, 53(10): 3298-3302. doi: 10.7498/aps.53.3298
    [15] Yan Sen-Lin, Chi Ze-Ying, Chen Wen-Jian, Wang Ze-Nong. Synchronization and decoding of chaotic lasers and their optimization. Acta Physica Sinica, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [16] Li Hong-Guang, Meng Guang. Harmonic signal extraction from chaotic interference based on empirical mode decomposition. Acta Physica Sinica, 2004, 53(7): 2069-2073. doi: 10.7498/aps.53.2069
    [17] Liu Hai-Feng, Dai Zheng-Hua, Chen Feng, Gong Xin, Yu Zun-Hong. . Acta Physica Sinica, 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
    [18] YANG SHI-PING, NIU YHAI-YAN, TIAN GANG, YUAN GUO-YONG, ZHANG SHAN. SYNCHRONIZING CHAOS BY DRIVING PARAMETER. Acta Physica Sinica, 2001, 50(4): 619-623. doi: 10.7498/aps.50.619
    [19] ZHANG JIA-SHU, XIAO XIAN-CI. CHAOTIC SYNCHRONIZATION SECURE COMMUNICATIONS BASED ON THE EXTENDED CHAOTIC MAPS SWITCH. Acta Physica Sinica, 2001, 50(11): 2121-2125. doi: 10.7498/aps.50.2121
    [20] WANG FU-PING, GUO JING-BO, WANG ZAN-JI, XIAO DA-CHUAN, LI MAO-TANG. HARMONIC SIGNAL EXTRACTION FROM STRONG CHAOTIC INTERFERENCE. Acta Physica Sinica, 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
Metrics
  • Abstract views:  6605
  • PDF Downloads:  377
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2016
  • Accepted Date:  25 June 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map