搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弹性变分模态提取的时间相关单光子计数信号去噪

汪书潮 苏秀琴 朱文华 陈松懋 张振扬 徐伟豪 王定杰

引用本文:
Citation:

基于弹性变分模态提取的时间相关单光子计数信号去噪

汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰

A time-correlated single photon counting signal denoising method based on elastic variational mode extraction

Wang Shu-Chao, Su Xiu-Qin, Zhu Wen-Hua, Chen Song-Mao, Zhang Zhen-Yang, Xu Wei-Hao, Wang Ding-Jie
PDF
HTML
导出引用
  • 单光子激光雷达的回波信号具有极低的信噪比, 有效地消除噪声和提取出回波信号特征是提升单光子激光雷达测距精度的关键, 变分模态分解算法需要使用者依据经验确定分解本征模态函数数量, 不具有适用性和通用性. 为此, 本文基于时间相关单光子计数信号特点, 提出了在变分模态分解中让信号按照指定频率进行聚类分解的变分约束条件, 并采用弹性网回归重构不适定问题的求解模型, 提出了弹性变分模态提取算法. 实验结果表明, 在波段850 nm、平均发射功率为25 nW、背景噪声平均功率为19.51 μW的条件下, 利用该方法, 得到了时间相关单光子计数信号重建精度的均方根误差为1.414 ns. 同时在不同的累积时间下, 能够稳定且快速地提取出回波信号特征, 有效地提高了算法的去噪能力和特征提取的性能.
    The performance of the method of measuring the time-correlated single photon counting signal is the key to improving the ranging accuracy of single photon light detection and ranging (LiDAR) technique, where noise elimination is a critically essential step to obtain the characteristics of signal. In this paper, a new method called elastic variational mode extraction (EVME) is proposed to extract the feature of the reflected photons from noisy environment. The method takes into account the characteristic of photon counting signal, and improves variational mode decomposition (VMD) method by adopting a new assumption that the extractive mode signal should be compact around desired center frequency. The proposed method also uses the elastic net regularization to solve ill-posed problem instead of Tikhonov regularization mentioned in VMD. Elastic net regularization takes into account both L2-norm regularization and L1-norm regularization, which can add an extra analysis dimension compared with the Tikhonov regularization. The method is validated with real data which are acquired on condition that average transmitting power is 25 nW while the average background noise power is 19.51 μW. The root mean square error of the reconstruction accuracy reaches 1.414 ns. Furthermore, compared with VMD, Haar wavelet, Hibert envelope, empirical mode decomposition (EMD) and complete ensemble empirical mode decomposition method based on adaptive noise (CEEMDAN) under different conditions, the proposed method show fast and stable performance under an extreme case.
      通信作者: 苏秀琴, suxiuqin@opt.ac.cn
    • 基金项目: 中国博士后科学基金(批准号: 2020M683600)和中国科学院战略高技术创新项目(批准号: GQRC-19-19)资助的课题
      Corresponding author: Su Xiu-Qin, suxiuqin@opt.ac.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2020M683600) and the Strategic High Technology Innovation Project of the Chinese Academy of Sciences (Grant No. GQRC-19-19)
    [1]

    孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 69 019502Google Scholar

    Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Chen X Y 2020 Acta Phys. Sin. 69 019502Google Scholar

    [2]

    Aurora M, Framncesco M D R, Aongus M, Robert H, Gerald S B 2019 Opt. Express 27 28437Google Scholar

    [3]

    David B L, Gordon W, Matthew O T 2019 ACM Trans. Graph. 38 116

    [4]

    Li Z P, Huang X, Cao Y, Wang B, Li Y H, Jin W J, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F H, Pan J W 2020 Photonics Res. 8 9

    [5]

    Swamy P C A, Sivaraman G, Priyanka R N, Raja S O 2020 Coord. Chem. Rev. 411 213233Google Scholar

    [6]

    Shangguan M J, Xia H Y, Wang C, Qiu J W, Lin S F, Dou X K, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541Google Scholar

    [7]

    Rachael T, Abderrahim H, Aongus M, Martin L, Framk C, Gerald S B 2019 Opt. Express 27 4590Google Scholar

    [8]

    Ingerman E A, London R A, Heintzmann R, Gustafsson M G L 2019 J. Microsc. 273 3Google Scholar

    [9]

    Chen S M, Halimi A, Ren X M, McCarthy A, Su X Q, McLaughlin S, Buller G S 2020 IEEE Trans. Image Process 29 3119Google Scholar

    [10]

    Ren X M, Frick S, McMillan A, Chen S M, Halimi A, Connolly P W R, Joshi S K, Mclaughlin S, Rarity J G, Matthews J C F, Buller G B, 2020 Conference on Lasers and Electro-Optics San Jose, CA, USA May 10–15 2020 pAM3K6

    [11]

    Chervyakov N, Lyakhov P, Kaplun D, Butusov D, Nagornov N 2018 Electronics 8 135

    [12]

    Buyukcakir B, Elmaz F, Mutlu A Y 2020 Comput. Biol. Med. 119 103665Google Scholar

    [13]

    Flandrin P, Rilling G, Goncalves P 2004 IEEE Signal Process Lett. 11 112Google Scholar

    [14]

    Zhang Z C, Hong W C 2019 Nonlinear Dyn. 98 1107Google Scholar

    [15]

    Li N, Huang W G, Guo W J, Gao G Q, Z hu, Z K 2020 IEEE Trans. Instrum. Meas. 69 770Google Scholar

    [16]

    Asbjornsson G, Erdem I, Evertsson M 2020 Miner. Eng. 147 106086Google Scholar

    [17]

    Rakshit M, Das S 2018 Biomed Signal Process Control 40 140Google Scholar

    [18]

    Abdelkader R, Kaddour A, Bendiabdellah A, Derouiche Z 2018 IEEE Sens. J. 18 7166Google Scholar

    [19]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Signal Process. 62 531Google Scholar

    [20]

    Li Z X, Jiang Y, Guo Q, Hu C, Peng Z X 2018 Renewable Energy 116 55Google Scholar

    [21]

    Nazari M, Sakhaei S M 2018 IEEE J. Biomed. Health Inform. 22 1059Google Scholar

    [22]

    Zhang Y G, Pan G F, Chen B, Han J Y, Zhao Y, Zhang C H 2020 Renewable Energy 156 1373Google Scholar

    [23]

    许子非岳敏楠李春 2019 68 238401Google Scholar

    Xu Z F, Yue M N, Li C 2019 Acta Phys. Sin. 68 238401Google Scholar

    [24]

    Diao X, Jiang J C, Shen G D, Chi Z Z, Wang Z R, Ni L, Mebarki A, Bian H T, Hao Y M 2020 Mech. Syst. Signal Process. 143 106787Google Scholar

    [25]

    Fu W L, Wang K, Li C S, Tan J W 2019 Energy Convers. Manage. 187 356Google Scholar

  • 图 1  系统工作原理图

    Fig. 1.  The principal components of the system.

    图 2  实验系统实物图

    Fig. 2.  Experimental system.

    图 3  时间相关单光子探测原始信号与6种方法对其重建的信号效果图 (a)激光器理论发射光信号; (b)实际接收信号; (c) Hilbert包络; (d) EMD; (e) CEEMDAN; (f) Haar小波软阈值法; (g) VMD; (h)本文方法

    Fig. 3.  The curves of time-correlated single photon single-photon signal and its six reconstruction algorithms: (a) Original signal; (b) theoretical output signal; (c) Hilbert envelope; (d) EMD; (e) CEEMDAN; (f) Haar wavelet; (g) VMD; (h) proposed method.

    图 4  6种方法在不同累积时间下去噪性能对比

    Fig. 4.  The line chart of the results comparison among proposed method and previously published methods.

    表 1  6种方法重建信号性能分析

    Table 1.  Performance comparison among proposed method and previously published methods.

    信号特征重建方法RMSE/nsMAE/nsSMAPE/%
    峰值本文方法1.7791.1671.156
    VMD2.4152.1672.100
    Haar WT3.8293.0002.959
    EMD4.2423.6673.599
    CEEMDAN5.1474.1673.599
    Hilbert包络4.1433.1673.104
    半高全宽本文方法1.5281.3331.056
    VMD1.9691.4171.115
    Haar WT2.3692.2501.096
    EMD8.5396.3335.060
    CEEMDAN8.1506.0004.740
    Hilbert包络10.005.3334.469
    短时能量本文方法1.4141.0000.855
    VMD1.8261.6671.402
    Haar WT2.38112.0001.694
    EMD4.1433.5002.962
    CEEMDAN4.1633.6673.107
    Hilbert包络4.2823.6673.140
    下载: 导出CSV

    表 2  本文方法耗时与其他方法的对比

    Table 2.  Time consumption comparison among proposed method and previously published methods.

    算法耗时/ms
    Hilbert包络20
    本文算法50
    VMD1470
    Haar WT75
    EMD1100
    CEEMDAN37060
    下载: 导出CSV
    Baidu
  • [1]

    孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 69 019502Google Scholar

    Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Chen X Y 2020 Acta Phys. Sin. 69 019502Google Scholar

    [2]

    Aurora M, Framncesco M D R, Aongus M, Robert H, Gerald S B 2019 Opt. Express 27 28437Google Scholar

    [3]

    David B L, Gordon W, Matthew O T 2019 ACM Trans. Graph. 38 116

    [4]

    Li Z P, Huang X, Cao Y, Wang B, Li Y H, Jin W J, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F H, Pan J W 2020 Photonics Res. 8 9

    [5]

    Swamy P C A, Sivaraman G, Priyanka R N, Raja S O 2020 Coord. Chem. Rev. 411 213233Google Scholar

    [6]

    Shangguan M J, Xia H Y, Wang C, Qiu J W, Lin S F, Dou X K, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541Google Scholar

    [7]

    Rachael T, Abderrahim H, Aongus M, Martin L, Framk C, Gerald S B 2019 Opt. Express 27 4590Google Scholar

    [8]

    Ingerman E A, London R A, Heintzmann R, Gustafsson M G L 2019 J. Microsc. 273 3Google Scholar

    [9]

    Chen S M, Halimi A, Ren X M, McCarthy A, Su X Q, McLaughlin S, Buller G S 2020 IEEE Trans. Image Process 29 3119Google Scholar

    [10]

    Ren X M, Frick S, McMillan A, Chen S M, Halimi A, Connolly P W R, Joshi S K, Mclaughlin S, Rarity J G, Matthews J C F, Buller G B, 2020 Conference on Lasers and Electro-Optics San Jose, CA, USA May 10–15 2020 pAM3K6

    [11]

    Chervyakov N, Lyakhov P, Kaplun D, Butusov D, Nagornov N 2018 Electronics 8 135

    [12]

    Buyukcakir B, Elmaz F, Mutlu A Y 2020 Comput. Biol. Med. 119 103665Google Scholar

    [13]

    Flandrin P, Rilling G, Goncalves P 2004 IEEE Signal Process Lett. 11 112Google Scholar

    [14]

    Zhang Z C, Hong W C 2019 Nonlinear Dyn. 98 1107Google Scholar

    [15]

    Li N, Huang W G, Guo W J, Gao G Q, Z hu, Z K 2020 IEEE Trans. Instrum. Meas. 69 770Google Scholar

    [16]

    Asbjornsson G, Erdem I, Evertsson M 2020 Miner. Eng. 147 106086Google Scholar

    [17]

    Rakshit M, Das S 2018 Biomed Signal Process Control 40 140Google Scholar

    [18]

    Abdelkader R, Kaddour A, Bendiabdellah A, Derouiche Z 2018 IEEE Sens. J. 18 7166Google Scholar

    [19]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Signal Process. 62 531Google Scholar

    [20]

    Li Z X, Jiang Y, Guo Q, Hu C, Peng Z X 2018 Renewable Energy 116 55Google Scholar

    [21]

    Nazari M, Sakhaei S M 2018 IEEE J. Biomed. Health Inform. 22 1059Google Scholar

    [22]

    Zhang Y G, Pan G F, Chen B, Han J Y, Zhao Y, Zhang C H 2020 Renewable Energy 156 1373Google Scholar

    [23]

    许子非岳敏楠李春 2019 68 238401Google Scholar

    Xu Z F, Yue M N, Li C 2019 Acta Phys. Sin. 68 238401Google Scholar

    [24]

    Diao X, Jiang J C, Shen G D, Chi Z Z, Wang Z R, Ni L, Mebarki A, Bian H T, Hao Y M 2020 Mech. Syst. Signal Process. 143 106787Google Scholar

    [25]

    Fu W L, Wang K, Li C S, Tan J W 2019 Energy Convers. Manage. 187 356Google Scholar

  • [1] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析.  , 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [2] 谷牧, 任栖锋, 周金梅, 廖胜. 基于地基观测的时序卫星红外光谱建模与分析.  , 2019, 68(5): 059501. doi: 10.7498/aps.68.20181933
    [3] 王梦蛟, 周泽权, 李志军, 曾以成. 混沌信号自适应协同滤波去噪.  , 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [4] 刘柏年, 皇群博, 张卫民, 任开军, 曹小群, 赵军. 集合背景误差方差中小波阈值去噪方法研究及试验.  , 2017, 66(2): 020505. doi: 10.7498/aps.66.020505
    [5] 孙成明, 赵飞, 袁艳. 基于光谱的天基空间点目标特征提取与识别.  , 2015, 64(3): 034202. doi: 10.7498/aps.64.034202
    [6] 王梦蛟, 吴中堂, 冯久超. 一种参数优化的混沌信号自适应去噪算法.  , 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [7] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [8] 王红胜, 纪道刚, 高艳磊, 张阳, 陈开颜, 陈军广, 吴令安, 王永仲. 基于时间相关单光子计数技术的密码芯片光辐射分析.  , 2015, 64(5): 058901. doi: 10.7498/aps.64.058901
    [9] 张玉燕, 周航, 闫美素. 基于经验模态分解的自混合干涉相位提取方法研究.  , 2015, 64(5): 054203. doi: 10.7498/aps.64.054203
    [10] 高鹏, 王超, 支亚, 李旸, 王立玢, 丛正. 铝合金焊缝电涡流磁场信号的非线性特征提取及分类方法研究.  , 2014, 63(13): 134103. doi: 10.7498/aps.63.134103
    [11] 路志英, 刘海, 贾惠珍, 尹静. 基于雷达反射率图像特征的冰雹暴雨识别.  , 2014, 63(18): 189201. doi: 10.7498/aps.63.189201
    [12] 陈晓, 汪陈龙. 基于赛利斯模型和分数阶微分的兰姆波信号消噪.  , 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [13] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究.  , 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [14] 祁浩, 王福豹, 邓宏. 基于无线传感器网络的地震信号特征提取方法研究.  , 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [15] 郑安总, 冷永刚, 范胜波. 基于奇异值分解的随机共振特征提取研究.  , 2012, 61(21): 210503. doi: 10.7498/aps.61.210503
    [16] 边洪瑞, 王江, 韩春晓, 邓斌, 魏熙乐, 车艳秋. 基于复杂度的针刺脑电信号特征提取.  , 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [17] 刘辉, 杨俊安, 王一. 基于流形学习的声目标特征提取方法研究.  , 2011, 60(7): 074302. doi: 10.7498/aps.60.074302
    [18] 韩春晓, 王江, 车艳秋, 邓斌, 郭义, 郭永明, 刘阳阳. 针刺足三里的脊髓背根神经电信号非线性特征提取.  , 2010, 59(8): 5880-5887. doi: 10.7498/aps.59.5880
    [19] 谢映海, 杨维, 张玉. 离散空间上的最小能量框架及其在矩形脉冲信号去噪中的应用研究.  , 2010, 59(11): 8255-8263. doi: 10.7498/aps.59.8255
    [20] 孟庆芳, 周卫东, 陈月辉, 彭玉华. 基于非线性预测效果的癫痫脑电信号的特征提取方法.  , 2010, 59(1): 123-130. doi: 10.7498/aps.59.123
计量
  • 文章访问数:  5460
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-04-26
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回
Baidu
map