搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调谐二极管激光技术利用小波去噪在2.008 μm波段对δ13CO2的研究(已撤稿)

牛明生 王贵师

引用本文:
Citation:

基于可调谐二极管激光技术利用小波去噪在2.008 μm波段对δ13CO2的研究(已撤稿)

牛明生, 王贵师

The research of δ13CO2 by use of wavelet de-noising at 2.008 μm based on tunable diode laser absorption spectroscopy

Niu Ming-Sheng, Wang Gui-Shi
PDF
导出引用
  • 利用分布反馈式激光器和小型多通池建立了性能稳定的δ13CO2测量系统.基于可调谐二极管激光技术在2.008 μm波段研究了几种常见的小波评价方法、评价能力与适用性,选出最佳小波函数Haar作为小波基进行分层.在最优层上采用VisuShrink阈值函数对δ13CO2测量中的去噪效果和测量精度进行了研究.在相同实验条件下,对去噪前后δ13CO2的测量结果进行了比较,然后从理论上分析了去噪前后测量结果不一致的原因,确定利用小波去噪对测量结果的精确性.结果表明,利用小波去噪对δ13CO2的测量精度比不用小波去噪时提高了7.3倍.
    Development of optical isotope techniques has provided scientists with a set of powerful tools for investigating the sources and sink of atmospheric CO2. Here we describe a continuous, high precision, compact and portable carbon dioxide isotope ratio laser multi-pass cell spectrometer with a tunable distribute feedback laser at 2.008 μm based on tunable diode laser absorption spectroscopy and, the spectrometer has good temperature and pressure stability. In order to deduce the noise, drift effect and background changes associated with low level signals, a superior signal processing technique of wavelet denoising, which possesses multi-level analytical resolutions both in time and frequency-domains, is introduced. After evaluating the method, evaluation ability and applicabilities of several common wavelet functions are analyzed and tested, the wavelet function of Haar is selected as an optimal wavelet basis function. Based on the analysis of the optimal decomposition level of Haa wavelet function, the VISU function is selected as an optimal wavelet threshold function. The denoising effect and measurement precision are evaluated by use of the VISU threshold function in the measurement process of carbon dioxide stable isotope ratio. The measurement results of carbon dioxide stable isotope ratio before and after suppressing the noises are compared in the same experiment conditions and, the inconsistent reasons of the measured results are theoretically analyzed. This technique allows the measurement of the δ-value for carbon dioxide isotopic ratios with a precision of -12.5‰ and and the measuremnt results show that the wavelet denoising measuring results have higher measurement accuracy, and the measurement precise of carbon dioxide isotope ratio is 7.3 times the original measurement results. The application of the wavelet denoising to the carbon dioxide isotope ratio measurement for the first time proves that the capability of the new near-infrared direct absorption technique to measure isotope ratio can permit high-frequency, near-continuous isotope measurement and obtain the high precision and accurate real-time stable isotope data directly in the field. This technique provides an important tool for studying the resource and sink of green house gases in the future.
      通信作者: 牛明生, nmsheng@163.com;wulixi2004@126.com ; 王贵师, nmsheng@163.com;wulixi2004@126.com
    • 基金项目: 国家自然科学基金(批准号:41405022)和曲阜师范大学博士启动基金(批准号:20130760)资助的课题.
      Corresponding author: Niu Ming-Sheng, nmsheng@163.com;wulixi2004@126.com ; Wang Gui-Shi, nmsheng@163.com;wulixi2004@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41405022) and the Qufu Normal University Fundation, China (Grant No. 20130760).
    [1]

    Liu L X, Zhou L X, Vaughn B, Miller J B, Brand W A, Rothe M, Xia L J 2014 J. Geophys. Res. Atmos. 119 5602

    [2]

    Mai B R, Deng X J, An X Q, Liu X T, Li F, Liu X 2014 China Environmental Science 34 1098 (in Chinese)[麦博儒, 邓雪娇, 安兴琴, 刘显通, 李菲, 刘霞2014中国环境科学34 1098]

    [3]

    Trend W 2016 Nature 531 281

    [4]

    Quéré C L, Andres R J, Boden T, et al. 2013 Earth Syst. Sci. Data 5 165

    [5]

    Marland G 2012 Nat. Clim. Change 2 645

    [6]

    Sturm P, Tuzson B, Henne S, Emmenegger L 2013 Atmos. Meas. Tech. 6 1659

    [7]

    Brass M, Röckmann T 2010 Atmos. Meas. Tech. 3 1707

    [8]

    Zare R N, Kuramoto D S, Haase C, Tan S M, Crosson E R, Saad Nabil M R 2009 PNAS 106 10928

    [9]

    McManus J B, Nelson D D, Zahniser M S 2015 Opt. Express 23 6569

    [10]

    Sayres D S, Moyer E J, Hanisco T F, et al. 2009 Rev. Sci. Instrum. 80 044102

    [11]

    Wang C, Srivastava N, Jones B A, Rreese R B 2008 Appl. Phys. B 92 259

    [12]

    Joseph F B, Todd B S, Max L 1992 Appl. Opt. 31 1921

    [13]

    Li X X, Xu L, Gao M G, Tong J J, Jin L, Li S, Wei X L, Feng M C 2013 Acta Phys. Sin. 62 180203 (in Chinese)[李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春2013 62 180203]

    [14]

    Pang J P, Wen X F, Sun X M 2016 Sci. Total. Environ. 539 322

    [15]

    Bartlome R, Sigrist M W 2009 Opt. Lett. 34 866

    [16]

    Li J S, Yu B L, Fischer H 2015 Appl. Spectrosc. 69 496

    [17]

    Zheng C T, Ye W L, Huang J Q, Cao T S, Lv M, Dang J M, Wang Y D 2014 Sens. Actuators B 190 249

    [18]

    Bergamaschi P, Schupp M, Harris G W 1994 Appl. Opt. 33 7704

    [19]

    Zhang T W, Krooss B M 2001 Geochim. Cosmochim. Acta 65 2723

    [20]

    Kerstel E R, Trigt R V, Dam N, Reuss J, Meijer H A J 1999 Anal. Chem. 71 5297

    [21]

    Wang Y, Mo J Y 2005 Spectrosc. Spect. Anal. 25 124 (in Chinese)[王瑛, 莫金垣2005光谱学与光谱分析25 124]

    [22]

    Wu T, Chen W D, Kerstel E, Fertein E, Gao X M, Koeth J, Rößner K, Brckner D 2010 Opt. Lett. 35 0146

    [23]

    Yang Q 2011 International Conference on Electronics & Optoelectronics 3 129

    [24]

    Luisier F, Vonesch C, Blu T, Unser M 2009 IEEE International Symposium on Biomedical Imaging 29 310

    [25]

    Ma Y, Wang X Y, Yong H 2011 CAC 28 303 (in Chinese)[马毅, 汪西原, 雍慧2011计算机与应用化学28 303]

    [26]

    Kumar H S, Pai P S, Sriram N S, Vijay G S 2013 Procedia Engineering 64 805

    [27]

    Gradolewski D, Redlarski G 2014 Comput. Biol. Med. 52 119

    [28]

    Naga R A, Chandralingam S, Anjaneyulu T, Satyanarayana K 2012 Meas. Sci. Rev. 12 46

    [29]

    Xu J, Kawashima S 2015 Arch. Ration. Mech. Anal. 28 1

    [30]

    Joseph F B, Todd B S, Max L 1992 Appl. Opt. 3 1921

    [31]

    Werle P 2011 Appl. Phys. B 102 313

  • [1]

    Liu L X, Zhou L X, Vaughn B, Miller J B, Brand W A, Rothe M, Xia L J 2014 J. Geophys. Res. Atmos. 119 5602

    [2]

    Mai B R, Deng X J, An X Q, Liu X T, Li F, Liu X 2014 China Environmental Science 34 1098 (in Chinese)[麦博儒, 邓雪娇, 安兴琴, 刘显通, 李菲, 刘霞2014中国环境科学34 1098]

    [3]

    Trend W 2016 Nature 531 281

    [4]

    Quéré C L, Andres R J, Boden T, et al. 2013 Earth Syst. Sci. Data 5 165

    [5]

    Marland G 2012 Nat. Clim. Change 2 645

    [6]

    Sturm P, Tuzson B, Henne S, Emmenegger L 2013 Atmos. Meas. Tech. 6 1659

    [7]

    Brass M, Röckmann T 2010 Atmos. Meas. Tech. 3 1707

    [8]

    Zare R N, Kuramoto D S, Haase C, Tan S M, Crosson E R, Saad Nabil M R 2009 PNAS 106 10928

    [9]

    McManus J B, Nelson D D, Zahniser M S 2015 Opt. Express 23 6569

    [10]

    Sayres D S, Moyer E J, Hanisco T F, et al. 2009 Rev. Sci. Instrum. 80 044102

    [11]

    Wang C, Srivastava N, Jones B A, Rreese R B 2008 Appl. Phys. B 92 259

    [12]

    Joseph F B, Todd B S, Max L 1992 Appl. Opt. 31 1921

    [13]

    Li X X, Xu L, Gao M G, Tong J J, Jin L, Li S, Wei X L, Feng M C 2013 Acta Phys. Sin. 62 180203 (in Chinese)[李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春2013 62 180203]

    [14]

    Pang J P, Wen X F, Sun X M 2016 Sci. Total. Environ. 539 322

    [15]

    Bartlome R, Sigrist M W 2009 Opt. Lett. 34 866

    [16]

    Li J S, Yu B L, Fischer H 2015 Appl. Spectrosc. 69 496

    [17]

    Zheng C T, Ye W L, Huang J Q, Cao T S, Lv M, Dang J M, Wang Y D 2014 Sens. Actuators B 190 249

    [18]

    Bergamaschi P, Schupp M, Harris G W 1994 Appl. Opt. 33 7704

    [19]

    Zhang T W, Krooss B M 2001 Geochim. Cosmochim. Acta 65 2723

    [20]

    Kerstel E R, Trigt R V, Dam N, Reuss J, Meijer H A J 1999 Anal. Chem. 71 5297

    [21]

    Wang Y, Mo J Y 2005 Spectrosc. Spect. Anal. 25 124 (in Chinese)[王瑛, 莫金垣2005光谱学与光谱分析25 124]

    [22]

    Wu T, Chen W D, Kerstel E, Fertein E, Gao X M, Koeth J, Rößner K, Brckner D 2010 Opt. Lett. 35 0146

    [23]

    Yang Q 2011 International Conference on Electronics & Optoelectronics 3 129

    [24]

    Luisier F, Vonesch C, Blu T, Unser M 2009 IEEE International Symposium on Biomedical Imaging 29 310

    [25]

    Ma Y, Wang X Y, Yong H 2011 CAC 28 303 (in Chinese)[马毅, 汪西原, 雍慧2011计算机与应用化学28 303]

    [26]

    Kumar H S, Pai P S, Sriram N S, Vijay G S 2013 Procedia Engineering 64 805

    [27]

    Gradolewski D, Redlarski G 2014 Comput. Biol. Med. 52 119

    [28]

    Naga R A, Chandralingam S, Anjaneyulu T, Satyanarayana K 2012 Meas. Sci. Rev. 12 46

    [29]

    Xu J, Kawashima S 2015 Arch. Ration. Mech. Anal. 28 1

    [30]

    Joseph F B, Todd B S, Max L 1992 Appl. Opt. 3 1921

    [31]

    Werle P 2011 Appl. Phys. B 102 313

  • [1] 齐刚, 黄印博, 凌菲彤, 杨佳琦, 黄俊, 杨韬, 张雷雷, 卢兴吉, 袁子豪, 曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比.  , 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] 王建海, 钱建强, 窦志鹏, 林锐, 许泽宇, 程鹏, 王丞, 李磊, 李英姿. 基于小波变换的多频静电力显微镜动态过程测量方法.  , 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [3] 战海洋, 邢飞, 张利. 面向近原子尺度制造的光学测量精度极限分析.  , 2021, 70(6): 060703. doi: 10.7498/aps.70.20201924
    [4] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究.  , 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [5] 孙明国, 马宏亮, 刘强, 曹振松, 王贵师, 刘锟, 黄印博, 高晓明, 饶瑞中. 2.0 μm附近模拟呼吸气体中13CO2/12CO2同位素丰度的高精度实时在线测量.  , 2018, 67(6): 064206. doi: 10.7498/aps.67.20171861
    [6] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值.  , 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [7] 李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强. 2μm波段高灵敏度离轴积分腔装置实际大气CO2测量.  , 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [8] 孟祥松, 张福民, 曲兴华. 基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究.  , 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [9] 李相贤, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国, 刘文清. 温室气体及碳同位素比值红外光谱反演精度的影响因素研究.  , 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [10] 陈祥子, 方伟, 王玉鹏, 杨振岭, 全向前. 高精度测量孔径光阑面积方法概述.  , 2013, 62(16): 164211. doi: 10.7498/aps.62.164211
    [11] 李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春. CO2及其碳同位素比值高精度检测研究.  , 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [12] 李钦蕾, 范凤英, 熊纬佳, 陈安滢, 黎闫. 应用于碳同位素丰度测量的激光频率刻度系统研究.  , 2013, 62(24): 242801. doi: 10.7498/aps.62.242801
    [13] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究.  , 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [14] 白福忠, 饶长辉. 针孔直径对自参考干涉波前传感器测量精度的影响.  , 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [15] 王晓璐, 徐梅, 令狐荣锋, 孙克斌, 杨向东. 氦同位素与氢分子碰撞的振转激发分波截面研究.  , 2010, 59(3): 1689-1694. doi: 10.7498/aps.59.1689
    [16] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He同位素与H2分子碰撞第二振动激发分波截面的理论研究.  , 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [17] 李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖. 多光束激光外差高精度测量玻璃厚度的方法.  , 2009, 58(8): 5473-5478. doi: 10.7498/aps.58.5473
    [18] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 不同能量的氦原子与同位素分子H2(D2,T2)碰撞分波截面的理论计算.  , 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [19] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响.  , 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] 谢建平, 邢晓正, 李传奇, 朱懋胜, 大园成夫. 高精度丝径测量中的偏振效应.  , 1989, 38(3): 399-406. doi: 10.7498/aps.38.399
计量
  • 文章访问数:  6279
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-29
  • 修回日期:  2016-10-27
  • 刊出日期:  2017-01-20

/

返回文章
返回
Baidu
map