Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiple cutoffs in high harmonic generation via multi-XUV-photon absorption

Yu Zu-Qing He Feng

Citation:

Multiple cutoffs in high harmonic generation via multi-XUV-photon absorption

Yu Zu-Qing, He Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High harmonic generation (HHG) is one of the most fundamental processes in the interaction of strong laser fields with atoms and molecules. Because of wide applications of HHG, for example, imaging atomic or molecular orbitals, visualizing chemical reactions, synthesizing a single attosecond pulse, the HHG attracts huge attentions in both theories and experiments. The HHG can be explained by the famous three-step model:first, the laser field bends the Coulomb potential and the electron tunnels out; second, the electron is accelerated in the laser field and gains kinetic energy; Third, the energetic electron recombines with the parent ion and release its energy as high energetic photons. The HHG can be tailored by controlling the each step. In this paper, we conceive a strategy to control the third step. We simulate the HHG when He+ is exposed to the combined few-cycle Ti-Sapphire (800 nm) IR femtosecond laser pulse and XUV laser pulse by numerically solving the time dependent Schrdinger equation. The simulation shows that after the electron tunnels out and gains energies from the infrared laser field, extra XUV photons may be absorbed during the electron and parent ion recombination, contributing multiple cutoffs separated by XUV photon energies in the high harmonic spectrum. This scenario is confirmed by time-delay-dependent HHG in the time-frequency representation, and by the power scaling of the cutoffs' intensities as a function of the XUV intensity.
      Corresponding author: He Feng, fhe@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104180, 11175120, 11121504, 11322438, 11574205).
    [1]

    Babrec T, Krausz F 2000Rev. Mod. Phys. 72 545

    [2]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [3]

    Kohler M C, Pfeifer T, Hatsagortsyan K Z, Keitel C H 2012Adv. At. Mol. Opt. Phys. 61 159

    [4]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004Nature 432 867

    [5]

    Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carre B, Taieb R, Salieres P 2010Nature Physics 6 200

    [6]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Y 2009Nature 460 972

    [7]

    Wöner H J, Bertrand J B, Kartashov D V, Corkum P B, Villeneuve D M 2010Nature 466 604

    [8]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S D, Nisoli M 2006Science 314 443

    [9]

    Pfeifer T, Jullien A, Abel M J, Nagel P M, Gallmann L, Neumark D M, Leone S R 2007Optics Express 15 17120

    [10]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008Science 320 1614

    [11]

    Mashiko H, Gilbertson S, Li S, Khan S D, Shakya M M, Moon E, Chang Z 2008Phys. Rev. Lett. 100 103906

    [12]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010Nature Photonics 4 875

    [13]

    Krause J L, Schafer K J, Kulander K C 1992Phys. Rev. Lett. 68 3535

    [14]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [15]

    Liu J C, Kohler M C, Keitel C H, Hatsagortsyan K Z 2011Phys. Rev. A 84 063817

    [16]

    Zeng Z, Li R, Cheng Y, Yu W, Xu Z 2002Physica Scripta 66 321

    [17]

    Ishikawa K 2003Phys. Rev. Lett. 91 043002

    [18]

    Heinrich A, Kornelis W, Anscombe M P, Hauri C P, Schlup P, Biegert J, Keller U 2006J. Phys. B 39 S275

    [19]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2007Phys. Rev. Lett. 99 053904

    [20]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005Phys. Rev. Lett. 94 243901

    [21]

    Lan P, Lu P, Cao W, Li Y, Wang X 2007Phys. Rev. A 76 051801

    [22]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007Phys. Rev. Lett. 98 203901

    [23]

    Chipperfield L E, Robinson J S, Tisch J W G, Marangos J P 2009Phys. Rev. Lett. 102 063003

    [24]

    Wu J, Zhang G T, Xia C L, Liu X S 2010Phys. Rev. A 82 013411

    [25]

    Kohler M, Hatsagortsyan K Z 2013JOSA B 30 57

    [26]

    Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov M Y, Villeneuve D M, Corkum P B 2006Nature Physics 2 781

    [27]

    Klaiber M, Kohler M C, Hatsagortsyan K Z, Keitel C H 2012Phys. Rev. A 85 063829

    [28]

    Adams B W, Buth C, Cavaletto S M, Evers J, Harman Z, Keitel C H, Palffy A, Picon A, Röhlsberger R, Rostovtsev Y, Kenji Y 2013J. Mod. Opt. 60 2

    [29]

    Kohler M C, Keitel C H, Hatsagortsyan K Z 2011Optics Express 19 4411

    [30]

    Fleischer A 2008Phys. Rev. A 78 053413

    [31]

    Buth C, Kohler M, Ullrich J, Keitel C H 2011Opt. Lett. 36 3530

    [32]

    Buth C 2015Eur. Phys. J. D 69 234

    [33]

    Buth C, He F, Ullrich J, Keitel C H, Hatsagortsyan K Z 2013Phys. Rev. A 88 033848

    [34]

    He F 2012Phys. Rev. A 86 063415

    [35]

    Kohler M C, Ott C, Raith P, Heck R, Schlegel I, Keitel C H, Pfeifer T 2010Phys. Rev. Lett. 105 203902

    [36]

    Popruzhenko S V, Zaretsky D F, Becker W 2010Phys. Rev. A 81 063417

    [37]

    Bertrand J B, Wörner H J, Bandulet H C, Bisson E, Spanner M, Kieffer J C, Villeneuve D M, Corkum P B 2011Phys. Rev. Lett. 106 023001

    [38]

    Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M, Kapteyn H C 2012Phys. Rev. Lett. 109 073004

    [39]

    Tong X M, Ranitovic P, Hickstein D D, Murnane M M, Kapteyn H C, Toshima N 2013Phys. Rev. A 88 013410

    [40]

    Sarachik E S, Schappert G T 1970Phys. Rev. D 1 2738

    [41]

    He F, Yu W, Lu P, Xu H, Qian L, Shen B, Yuan X, Li R, Xu Z 2003Phys. Rev. E 68 046407

    [42]

    Smirnova O, Patchkovskii S, Spanner M 2007Phys. Rev. Lett. 98 123001

  • [1]

    Babrec T, Krausz F 2000Rev. Mod. Phys. 72 545

    [2]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [3]

    Kohler M C, Pfeifer T, Hatsagortsyan K Z, Keitel C H 2012Adv. At. Mol. Opt. Phys. 61 159

    [4]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004Nature 432 867

    [5]

    Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carre B, Taieb R, Salieres P 2010Nature Physics 6 200

    [6]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Y 2009Nature 460 972

    [7]

    Wöner H J, Bertrand J B, Kartashov D V, Corkum P B, Villeneuve D M 2010Nature 466 604

    [8]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S D, Nisoli M 2006Science 314 443

    [9]

    Pfeifer T, Jullien A, Abel M J, Nagel P M, Gallmann L, Neumark D M, Leone S R 2007Optics Express 15 17120

    [10]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008Science 320 1614

    [11]

    Mashiko H, Gilbertson S, Li S, Khan S D, Shakya M M, Moon E, Chang Z 2008Phys. Rev. Lett. 100 103906

    [12]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010Nature Photonics 4 875

    [13]

    Krause J L, Schafer K J, Kulander K C 1992Phys. Rev. Lett. 68 3535

    [14]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [15]

    Liu J C, Kohler M C, Keitel C H, Hatsagortsyan K Z 2011Phys. Rev. A 84 063817

    [16]

    Zeng Z, Li R, Cheng Y, Yu W, Xu Z 2002Physica Scripta 66 321

    [17]

    Ishikawa K 2003Phys. Rev. Lett. 91 043002

    [18]

    Heinrich A, Kornelis W, Anscombe M P, Hauri C P, Schlup P, Biegert J, Keller U 2006J. Phys. B 39 S275

    [19]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2007Phys. Rev. Lett. 99 053904

    [20]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005Phys. Rev. Lett. 94 243901

    [21]

    Lan P, Lu P, Cao W, Li Y, Wang X 2007Phys. Rev. A 76 051801

    [22]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007Phys. Rev. Lett. 98 203901

    [23]

    Chipperfield L E, Robinson J S, Tisch J W G, Marangos J P 2009Phys. Rev. Lett. 102 063003

    [24]

    Wu J, Zhang G T, Xia C L, Liu X S 2010Phys. Rev. A 82 013411

    [25]

    Kohler M, Hatsagortsyan K Z 2013JOSA B 30 57

    [26]

    Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov M Y, Villeneuve D M, Corkum P B 2006Nature Physics 2 781

    [27]

    Klaiber M, Kohler M C, Hatsagortsyan K Z, Keitel C H 2012Phys. Rev. A 85 063829

    [28]

    Adams B W, Buth C, Cavaletto S M, Evers J, Harman Z, Keitel C H, Palffy A, Picon A, Röhlsberger R, Rostovtsev Y, Kenji Y 2013J. Mod. Opt. 60 2

    [29]

    Kohler M C, Keitel C H, Hatsagortsyan K Z 2011Optics Express 19 4411

    [30]

    Fleischer A 2008Phys. Rev. A 78 053413

    [31]

    Buth C, Kohler M, Ullrich J, Keitel C H 2011Opt. Lett. 36 3530

    [32]

    Buth C 2015Eur. Phys. J. D 69 234

    [33]

    Buth C, He F, Ullrich J, Keitel C H, Hatsagortsyan K Z 2013Phys. Rev. A 88 033848

    [34]

    He F 2012Phys. Rev. A 86 063415

    [35]

    Kohler M C, Ott C, Raith P, Heck R, Schlegel I, Keitel C H, Pfeifer T 2010Phys. Rev. Lett. 105 203902

    [36]

    Popruzhenko S V, Zaretsky D F, Becker W 2010Phys. Rev. A 81 063417

    [37]

    Bertrand J B, Wörner H J, Bandulet H C, Bisson E, Spanner M, Kieffer J C, Villeneuve D M, Corkum P B 2011Phys. Rev. Lett. 106 023001

    [38]

    Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M, Kapteyn H C 2012Phys. Rev. Lett. 109 073004

    [39]

    Tong X M, Ranitovic P, Hickstein D D, Murnane M M, Kapteyn H C, Toshima N 2013Phys. Rev. A 88 013410

    [40]

    Sarachik E S, Schappert G T 1970Phys. Rev. D 1 2738

    [41]

    He F, Yu W, Lu P, Xu H, Qian L, Shen B, Yuan X, Li R, Xu Z 2003Phys. Rev. E 68 046407

    [42]

    Smirnova O, Patchkovskii S, Spanner M 2007Phys. Rev. Lett. 98 123001

  • [1] Zhang Chun-Yan. High-order harmonic platform extension and cluster expansion of H ion cluster. Acta Physica Sinica, 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] Wei Bo-Ning, Jiao Zhi-Hong, Zhou Xiao-Xin. Frequency shiftand control ofhigh-order harmonicsof H atom driven by anasymmetric laser pulse. Acta Physica Sinica, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [3] Yao Hui-Dong, Cui Bo, Ma Si-Qi, Yu Chao, Lu Rui-Feng. Enhancing high harmonic generation in bilayer MoS2 by interlayer atomic dislocation. Acta Physica Sinica, 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [4] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [5] Fan Xin, Liang Hong-Jing, Shan Li-Yu, Yan Bo, Gao Qing-Hua, Ma Ri, Ding Da-Jun. Extreme ultraviolet polarization vortex beam based on high harmonic generation. Acta Physica Sinica, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [6] Cai Huai-Peng1\2, Gao Jian1\2, Li Bo-Yuan1\2, Liu Feng1\2, Chen Li-Ming1\2\3, Yuan Xiao-Hui1\2, Chen Min1\2, Sheng Zheng-Ming1\2\4\5, Zhang Jie1\2\3High order harmonics generation by relativistically circularly polarized laser-solid interaction. Acta Physica Sinica, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [7] Li Xia-Zhi, Zou De-Bin, Zhou Hong-Yu, Zhang Shi-Jie, Zhao Na, Yu De-Yao, Zhuo Hong-Bin. Effect of plasma grating roughness on high-order harmonic generation. Acta Physica Sinica, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [8] Tang Rong, Wang Guo-Li, Li Xiao-Yong, Zhou Xiao-Xin. Compression of extreme ultraviolet pulse for atom with resonant structure exposed to an infrared laser field. Acta Physica Sinica, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [9] Luo Xiang-Yi, Liu Hai-Feng, Ben Shuai, Liu Xue-Shen. Enhancement of high-order harmonic generation from H2+ in near plasmon-enhanced laser field. Acta Physica Sinica, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [10] Guan Zhong, Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Study of high-order harmonic generation in crystals exposed to laser fields. Acta Physica Sinica, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [11] Yu Chao, Sun Zhen-Rong, Guo Dong-Sheng. Guo-Åberg-Crasemann theory for high harmonic generation and its cutoff law. Acta Physica Sinica, 2015, 64(12): 124207. doi: 10.7498/aps.64.124207
    [12] Lu Fa-Ming, Xia Yuan-Qin, Zhang Sheng, Chen De-Ying. Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne. Acta Physica Sinica, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [13] Chen Gao, Yang Yu-Jun, Guo Fu-Ming. Analysis on the cutoff frequency of high order harmonic generation in the crystal. Acta Physica Sinica, 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [14] Cao Wei-Jun, Cheng Chun-Zhi, Zhou Xiao-Xin. The relationship between conversion efficiency of high-order harmonic generation from atom and wavelength in two-color combined fields. Acta Physica Sinica, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [15] Cui Lei, Wang Xiao-Juan, Wang Fan, Zeng Xiang-Hua. Effect of laser polarization direction on high order harmonic generation of oxygen molecule——A simulation via TDDFT. Acta Physica Sinica, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [16] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [17] Cui Lei, Gu Bin, Teng Yu-Yong, Hu Yong-Jin, Zhao Jiang, Zeng Xiang-Hua. Effect of different laser polarization direction on high order harmonic generation of nitrogen molecule——A simulation via TDDFT. Acta Physica Sinica, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Redshift of harmonics by laser interaction with solid target. Acta Physica Sinica, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] Wang Da-Wei, Liu Ting-Ting, Yang Hong, Jiang Hong-Bin, Gong Qi-Huang. . Acta Physica Sinica, 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [20] YU SHENG, LI HONG-FU, XIE ZHONG-LIAN, LUO YONG. A NONLINEAR SIMULATION ON BEAM-WAVE INTERACTION FOR HIGH-HARMONIC COMPLEX CAVITY GYROTRON WITH RADUAL TRANSITION. Acta Physica Sinica, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
Metrics
  • Abstract views:  5558
  • PDF Downloads:  315
  • Cited By: 0
Publishing process
  • Received Date:  18 October 2016
  • Accepted Date:  08 November 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map