-
极紫外光和软X射线由于其波长和脉冲持续时间极短,可用于超快物理过程和物质微观结构的探测.最近几年,研究人员发现激光和等离子体相互作用可以产生持续时间极短(阿秒)且相干性较好的高次谐波辐射,其波长可接近甚至达到水窗波段.然而,实验研究指出,理论上应出现的一些谐波在实验中并没有出现.本文针对超短超强激光与非理想条件下的等离子体光栅靶相互作用产生高次谐波的物理过程进行了理论分析和粒子模拟.研究结果表明,等离子体光栅的周期性结构对于高次谐波的频谱和辐射角分布存在显著调制效果.光栅靶表面粗糙度直接影响光栅的光学调制效果,改变高次谐波的频谱分布和辐射角分布.理想光栅条件下,满足光栅匹配条件的特定阶数谐波明显获得增强,且辐射张角集中在平行靶面的方向.靶表面粗糙度的出现,导致光栅匹配条件失效,高次谐波能量向各阶分散且辐射张角逐渐偏离靶表面方向.研究结果较好地解释了实验中观测到的谐波频谱分布,为进一步的研究提供了一定参考.Extreme ultra-violet (XUV) light and soft X-ray are widely used to detect the microscopic structure and observe the ultra-fast physical process. It is found that high order harmonic with the frequency as high as that of the waterwindow waves and the pulse duration as short as attosecond can be obtained in the laser-plasma interaction. Due to these features, high order harmonic (HH) is a promising alternative to generating ultra-short XUV light and X-ray. Recently, HHs have been observed in the experiments. However, the frequency spectrum is not complete compared with the results predicted theoretically and numerically. It might relate to the damage of the grating target surface by a long laser repulse. In this article, the effect of target surface roughness on the high order generation (HHG) in the interaction between ultra-intense laser pulse and grating targets is investigated by surface current model and particle-in-cell simulations. We find that both the spatial and spectral domains of harmonics are modulated by the periodical structure of the grating due to the optical interference. The roughness on the surface significantly distorts the modulation effect and leads to different radiation angle and spectral distributions. For the ideal grating, only harmonics satisfying matching condition in a certain direction can be enhanced and the radiation power is restricted in the direction nearly parallel to the target surface. When the surface roughness of the grating target is considered, the matching condition is not valid and the harmonics are scattered into the direction away from the target surface. Comparing with the ideal grating target, most of the harmonic energy is concentrated in the low order harmonics and the intensities of the harmonics decrease rapidly with increasing HH order when surface roughness is considered. The results show good consistence with the phenomena observed in previous experiments and provide the technical reference for exploring the future applications of HHs and HHG.
-
Keywords:
- high-order harmonics /
- ultra-intense laser pulse /
- plasma grating target /
- surface current model
[1] Haight R, Seidler P F 1994 Appl. Phys. Lett. 65 517
[2] Cavalieri A L, Mller N, Uphues T, Yakovlev V S, Baltuska A, Horvath B, Schmidt B, Blmel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029
[3] La-O-Vorakiat C, Siemens M, Murnane M M, Kapteyn H C, Mathias S, Aeschlimann M, Grychtol P, Adam R, Schneider C M, Shaw J M, Nembach H, Silva T J 2009 Phys. Rev. Lett. 103 257402
[4] Tobey R I, Siemens M E, Murnane M M, Kapteyn H C, Torchinsky D H, Nelson K A 2006 Appl. Phys. Lett. 89 091108
[5] Abo-Bakr M, Feikes J, Holldack K, Kuske P, Peatman W, Schade U, Wstefeld G, Hbers H W 2005 Phys. Rev. Lett. 90 094801
[6] Jeong Y U, Kazakevitch G M, Cha H J, Park S H, Lee B C 2003 Nucl. Instrum. Meth. 543 90
[7] Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese) [李昆, 张杰, 余玮 2003 52 1412]
[8] Li X X, Xu Z Z, Tang Y 1997 Acta Phys. Sin. 46 267 (in Chinese) [李学信, 徐至展, 汤燕 1997 46 267]
[9] Zhang Q J, Sheng Z M, Zhang J 2004 Acta Phys. Sin. 53 2180 (in Chinese) [张秋菊, 盛正明, 张杰 2004 53 2180]
[10] Ge Y C 2008 Acta Phys. Sin. 57 4091 (in Chinese) [葛愉成 2008 57 4091]
[11] Du H, Zhang H D, Zhang J, Liu H F, Pan X F, Guo J, Liu X S 2016 Chin. Phys. B 25 113201
[12] Luo X Y, Ben S, Ge X L, Wang Q, Guo J, Liu X S 2016 Acta Phys. Sin. 65 123201 (in Chinese) [罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深 2016 65 123201]
[13] Grebogi C, Tripathi V K 1983 Phys. Fluids 26 1904
[14] Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745
[15] Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832
[16] Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Réau F, D'Oliveira P, Audebert P 2007 Nat. Phys. 3 424
[17] Brownell J H, Walsh J 1998 Phys. Rev. E 57 1075
[18] Zhang S J, Zhuo H B, Zou D B, Gan L F, Zhou H Y, Li X Z, Yu M Y 2016 Phys. Rev. E 93 053206
[19] Yu W, Yu M Y, Zhang J, Xu Z 1998 Phys. Rev. E 57 R2531
[20] Lavocat-Dubuis X, Matte J P 2010 Phys. Plasmas 17 093105
[21] Cerchez M, Giesecke A L, Peth C, Toncian M, Albertazzi B, Fuchs J, Willi O, Toncian T 2013 Phys. Rev. Lett. 110 065003
-
[1] Haight R, Seidler P F 1994 Appl. Phys. Lett. 65 517
[2] Cavalieri A L, Mller N, Uphues T, Yakovlev V S, Baltuska A, Horvath B, Schmidt B, Blmel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029
[3] La-O-Vorakiat C, Siemens M, Murnane M M, Kapteyn H C, Mathias S, Aeschlimann M, Grychtol P, Adam R, Schneider C M, Shaw J M, Nembach H, Silva T J 2009 Phys. Rev. Lett. 103 257402
[4] Tobey R I, Siemens M E, Murnane M M, Kapteyn H C, Torchinsky D H, Nelson K A 2006 Appl. Phys. Lett. 89 091108
[5] Abo-Bakr M, Feikes J, Holldack K, Kuske P, Peatman W, Schade U, Wstefeld G, Hbers H W 2005 Phys. Rev. Lett. 90 094801
[6] Jeong Y U, Kazakevitch G M, Cha H J, Park S H, Lee B C 2003 Nucl. Instrum. Meth. 543 90
[7] Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese) [李昆, 张杰, 余玮 2003 52 1412]
[8] Li X X, Xu Z Z, Tang Y 1997 Acta Phys. Sin. 46 267 (in Chinese) [李学信, 徐至展, 汤燕 1997 46 267]
[9] Zhang Q J, Sheng Z M, Zhang J 2004 Acta Phys. Sin. 53 2180 (in Chinese) [张秋菊, 盛正明, 张杰 2004 53 2180]
[10] Ge Y C 2008 Acta Phys. Sin. 57 4091 (in Chinese) [葛愉成 2008 57 4091]
[11] Du H, Zhang H D, Zhang J, Liu H F, Pan X F, Guo J, Liu X S 2016 Chin. Phys. B 25 113201
[12] Luo X Y, Ben S, Ge X L, Wang Q, Guo J, Liu X S 2016 Acta Phys. Sin. 65 123201 (in Chinese) [罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深 2016 65 123201]
[13] Grebogi C, Tripathi V K 1983 Phys. Fluids 26 1904
[14] Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745
[15] Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832
[16] Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Réau F, D'Oliveira P, Audebert P 2007 Nat. Phys. 3 424
[17] Brownell J H, Walsh J 1998 Phys. Rev. E 57 1075
[18] Zhang S J, Zhuo H B, Zou D B, Gan L F, Zhou H Y, Li X Z, Yu M Y 2016 Phys. Rev. E 93 053206
[19] Yu W, Yu M Y, Zhang J, Xu Z 1998 Phys. Rev. E 57 R2531
[20] Lavocat-Dubuis X, Matte J P 2010 Phys. Plasmas 17 093105
[21] Cerchez M, Giesecke A L, Peth C, Toncian M, Albertazzi B, Fuchs J, Willi O, Toncian T 2013 Phys. Rev. Lett. 110 065003
计量
- 文章访问数: 6036
- PDF下载量: 164
- 被引次数: 0