-
A joule-level Nd: YAG nanosecond laser of high repetition frequency and high beam quality is developed for Thomson scattering diagnosis. The laser is designed as a master oscillator power-amplifier system mainly including single longitudinal mode seed, pre-amplifier unit and energy extraction unit. The single-longitudinal-mode Q-switched laser of a high stability is taken as the seed laser of output pulse at J level. The pre-amplifier unit amplifies the J-level pulse laser beam into hundreds of mJ level. In order to obtain the high-quality laser beam output, phase conjugation is adopted to compensate for the laser beam distortion. The ultra-filtered FC-770 is taken as an SBS gain medium of 0.0011 cm-1 absorption coefficient, 197.9 GW/cm2 optical breakdown threshold and 3.5 cm/GW gain coefficient. The double-pass amplification of SBS phase conjugation could realize a real-time repair towards the non-uniformity, deformation and wavefront aberration caused by thermal distortion of the optical components and the laser amplifier to achieve the uniform amplified beam output of high quality close to the diffraction limit. In the energy extraction unit, the amplifier of large-diameter slab is used for energy amplification. The size of the slab is 7 mm 35 mm138.2 mm of 56 cutting angle and 0.6% Nd3+ doping concentration. The slab is plated by a layer of SiO2 against light leak. Horizontal pumping mode is adopted. And the slow axis of the laser diode is almost the same as the length of the slat and the direction of laser transmission. The single-plane array is composed of 8 groups of vertical stacks and each group consists of 12 laser diode bars of power 200 W. At 200 Hz repetition frequency, 250 s pump pulse width and 140 A pump current, the up to 2.3 J stored energy can be achieved The energy extraction unit achieves high gain amplification and finally outputs high-quality laser beam. Under the condition of 200 Hz high repetition frequency and 8.23 J single pulse energy injected by the single longitudinal mode seed, 1.85 J output energy is gained. The energy extract efficiency of the laser system is 52.46%. The output laser possesses a pulse width of 5.36 ns, a far field beam spot 1.72 times the diffraction-limited value, and 1.3% energy stability (RMS).
-
Keywords:
- diode-pumped /
- high repetition /
- nanosecond laser /
- high beam quality
[1] Ci X J, Huang Y, Tang C J, Feng Z, Shi P L, Liu C H, Qiu Y {2009 High Power Laser and Particle Beams 21 359 (in Chinese) [慈佳祥, 黄渊, 唐昌建, 冯震, 施佩兰, 刘春华, 邱银 2009 强激光与粒子束 21 359]
[2] Andrbe Y, Behn R, Duval B P, Etienne P, Pitzschke A 2011 Fusion Eng. Des. 86 1273
[3] Kim Y G, Lee J H, Lee J, An Y H, Dang J J Jo J M, Lee H Y, Chung K J, Hwang Y S, Na Y S 2015 Fusion Eng. Des. 96-97 882
[4] Qi Y F, Zhu X L, Lou Q H, Ji J H, Dong J X, Wei R R {2007 J. Opt. Soc. Am. B 24 1042
[5] Jae S S, Sangwoo P, Hong J K 2010 Opt. Commun. 283 2402
[6] Yang H D, Li X H, Li G Q, Yuan C H, Tang D C, Xu Q, Qiu R, Wang J B 2011 Acta Phys. Sin. 60 027901 (in Chinese) [杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波 2011 60 027901]
[7] Liang D W, Joana A, Dario G 2014 Appl. Opt. 53 1856
[8] Yashida H, Masahiro N, Takaki H, Shigeru K, Takaki S, Takaki H 2004 Jpn. J. Appl. Phys. 43 1038
[9] Yang X D, Bo Y, Peng Q J, Zhang H L, Geng A C, Cui Q J, Sun Z P, Cui D F, Xu Z Y 2006 Opt. Commun 266 39
[10] Hatae T, Yatsuka E, Hayashi T, Yoshida H, Ono T, and Kusama Y 2012 , Rev. Sci. Instrum. 83 10E344
[11] Qi Yang Q, Zhu X L, Ma J, Lu T T, Ma X H, Chen W B 2015 Chin. Opt. Lett. 13 061401
[12] Ma X, Wang J, Zhou J, Zhu X, Chen W 2011 Appl. Phys. B 103 809
[13] Pierre R J S, Mordaunt D W, Injeyan H, Berg J G, Hilyard R C, Weber M E, Wickham M G, Harpole G M, Senn R 1997 IEEE J. Selected Topics in Quantum Electronics 3 53
[14] Yang H L, Meng J Q, Ma X H, Chen W B 2014 Chin. Opt. Lett. 12 121406
[15] Hasi W L J, Qiao Z, Cheng S X, Wang X Y, Zhong Z M, Zheng Z X, Lin D Y, He W M, Lu Z W 2013 Opt. Commun. 311 375
-
[1] Ci X J, Huang Y, Tang C J, Feng Z, Shi P L, Liu C H, Qiu Y {2009 High Power Laser and Particle Beams 21 359 (in Chinese) [慈佳祥, 黄渊, 唐昌建, 冯震, 施佩兰, 刘春华, 邱银 2009 强激光与粒子束 21 359]
[2] Andrbe Y, Behn R, Duval B P, Etienne P, Pitzschke A 2011 Fusion Eng. Des. 86 1273
[3] Kim Y G, Lee J H, Lee J, An Y H, Dang J J Jo J M, Lee H Y, Chung K J, Hwang Y S, Na Y S 2015 Fusion Eng. Des. 96-97 882
[4] Qi Y F, Zhu X L, Lou Q H, Ji J H, Dong J X, Wei R R {2007 J. Opt. Soc. Am. B 24 1042
[5] Jae S S, Sangwoo P, Hong J K 2010 Opt. Commun. 283 2402
[6] Yang H D, Li X H, Li G Q, Yuan C H, Tang D C, Xu Q, Qiu R, Wang J B 2011 Acta Phys. Sin. 60 027901 (in Chinese) [杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波 2011 60 027901]
[7] Liang D W, Joana A, Dario G 2014 Appl. Opt. 53 1856
[8] Yashida H, Masahiro N, Takaki H, Shigeru K, Takaki S, Takaki H 2004 Jpn. J. Appl. Phys. 43 1038
[9] Yang X D, Bo Y, Peng Q J, Zhang H L, Geng A C, Cui Q J, Sun Z P, Cui D F, Xu Z Y 2006 Opt. Commun 266 39
[10] Hatae T, Yatsuka E, Hayashi T, Yoshida H, Ono T, and Kusama Y 2012 , Rev. Sci. Instrum. 83 10E344
[11] Qi Yang Q, Zhu X L, Ma J, Lu T T, Ma X H, Chen W B 2015 Chin. Opt. Lett. 13 061401
[12] Ma X, Wang J, Zhou J, Zhu X, Chen W 2011 Appl. Phys. B 103 809
[13] Pierre R J S, Mordaunt D W, Injeyan H, Berg J G, Hilyard R C, Weber M E, Wickham M G, Harpole G M, Senn R 1997 IEEE J. Selected Topics in Quantum Electronics 3 53
[14] Yang H L, Meng J Q, Ma X H, Chen W B 2014 Chin. Opt. Lett. 12 121406
[15] Hasi W L J, Qiao Z, Cheng S X, Wang X Y, Zhong Z M, Zheng Z X, Lin D Y, He W M, Lu Z W 2013 Opt. Commun. 311 375
Catalog
Metrics
- Abstract views: 6730
- PDF Downloads: 252
- Cited By: 0