搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铋黄铜中微量元素的高重复频率激光剥离-火花诱导击穿光谱定量分析

黄梅婷 姜银花 陈钰琦 李润华

引用本文:
Citation:

铋黄铜中微量元素的高重复频率激光剥离-火花诱导击穿光谱定量分析

黄梅婷, 姜银花, 陈钰琦, 李润华

Quantitative analysis of trace elements in bismuth brass with high repetition rate laser-ablation spark-induced breakdown spectrum

Huang Mei-Ting, Jiang Yin-Hua, Chen Yu-Qi, Li Run-Hua
PDF
HTML
导出引用
  • 铋黄铜具有很好的机械加工性能且更为环保, 具有广泛的应用. 本文采用高重复频率激光剥离-火花诱导击穿光谱技术来实现铋黄铜中微量元素的快速和高灵敏分析. 实验采用小型化光纤激光器作为剥离光源, 采用小型化光纤光谱仪采集光谱, 对铋黄铜中的铋、铅和锡三元素开展了定量分析. 实验确定等离子体的温度和电子密度分别为7962 ± 300 K 和1.049 × 10–17 cm–3. 在该条件下建立了铋、铅和锡三元素的校正曲线, 并得到了较好的拟合优度. 现有条件下三元素的检测限分别达到了25.5 × 10–6, 64.2 × 10–6和316.5 × 10–6. 其中锡的检出限较高, 与锡的原子谱线强度较弱有关. 结果表明, 采用小型化的高重复频率激光剥离-火花诱导击穿光谱仪可以实现对铋黄铜中微量元素的便捷和高灵敏分析.
    Bismuth brass has very good mechanical properties and is friendly to environment. Therefore, it can be widely used in different fields. In order to realize the convenient, rapid and sensitive elemental analysis of trace elements in bismuth brass, fiber laser based high repetition rate laser-ablation spark-induced breakdown spectroscopy (HRR LA-SIBS) is developed. In the experiments, a compact fiber laser operated at 5 kHz pulse repetition rate is used to ablate the sample and produce plasma, and the spark discharge is used to further break down the ablated sample and enhance the plasma emission for sensitive elemental analysis. A compact fiber-optic spectrometer coupled with non-intensified charge-coupled device (CCD) is used to record the spectra. Bismuth, lead and tin in several bismuth brass standard samples are quantitatively analyzed. The plasma temperature is determined to be about 7962 ± 300 K by using the Boltzmann plots of copper, zinc and tin elements; the electron density is determined to be about 1.049 × 10–17 cm–3 based on the Stark broadening of Cu (I) 510.47 nm analytical line. The plasma is determined to be in local thermodynamic equilibrium (LTE) state according to McWhirter criterion as well as appended criteria for transient plasma. Under the present experimental condition, the calibration curves of bismuth, lead and tin in bismuth brass are built with fitting goodness of higher than 95%. The detection limits of bismuth, lead and tin are determined to be 25.5 ppm, 64.2 ppm and 316.5 ppm, respectively. The weak transition probability of tin atoms leads to worse detection limit of tin than the scenarios of bismuth and lead. The ways to further improve the analytical sensitivity and minimize system dimensions are discussed in this article. It is demonstrated that high repetition rate laser-ablation spark-induced breakdown spectrometer based on compact fiber laser as well as compact fiber-optic spectrometer can be used to realize the convenient, rapid and sensitive elemental analysis of trace elements in bismuth brass. This study is also helpful in analyzing the trace harmful elements, including bismuth, lead and tin in high temperature alloys with HRR LA-SIBS. In comparison with laser-induced breakdown spectroscopy (LIBS), the HRR LA-SIBS technique has several intrinsic advantages, such as fast spectral data collection speed, cost-effective system and low continuum background and so on. This technique is very useful in implementing the elemental analysis of different alloy samples and can be potentially used in metallurgical industry in the future.
      通信作者: 李润华, rhli@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61875055)资助的课题
      Corresponding author: Li Run-Hua, rhli@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875055)
    [1]

    肖来荣, 舒学鹏, 易丹青, 张路怀, 覃静丽, 胡加瑞 2009 中南大学学报 (自然科学版) 40 117

    Xiao L R, Shu X P, Yi D Q, Zhang L H, Qin J L, Hu J R 2009 J. Cent. South Univ. (Sci. Technol.) 40 117

    [2]

    Thangavel S, Dash K, Dhavile S M, Sahayam A C 2015 Talanta 131 505Google Scholar

    [3]

    Zhu D, Wang X, Ni X W, Cheng J P, Lu J 2011 Plasma Sci. Technol. 13 486Google Scholar

    [4]

    Zhao T Z, Fan Z W, Lian F Q, Liu Y, Lin W R, Mo Z Q, Nie S Z, Wang P, Xiao H, Li X, Zhong Q X, Zhang H G 2017 Spectrochim. Acta, Part B 137 64Google Scholar

    [5]

    Gojani A B 2012 ISRN Spectrosc. 2012 868561

    [6]

    崔执凤, 张先, 姚关心, 汪小丽, 许新胜, 郑贤锋, 凤尔银, 季学韩 2006 55 4506Google Scholar

    Cui Z F, Zhang X, Yao G X, Wang X L, Xu X S, Zheng X F, Feng E Y, Ji X H 2006 Acta Phys. Sin. 55 4506Google Scholar

    [7]

    陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂 2014 63 104213Google Scholar

    Chen T B, Yao M Y, Liu M H, Lin Y Z, Li W B, Zheng M L, Zhou H M 2014 Acta Phys. Sin. 63 104213Google Scholar

    [8]

    杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 62 045202Google Scholar

    Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202Google Scholar

    [9]

    Li C M, Hao Z Q, Zou Z M, Zhou R, Li J M, Guo L B, Li X Y, Lu Y F, Zeng X Y 2016 Opt. Express 24 7850Google Scholar

    [10]

    Laville S, Goueguel C, Loudyi H, Vidal F, Chaker M, Mohamad S 2009 Spectrochim. Acta, Part B 64 347Google Scholar

    [11]

    Wang Y R, Kang J, Chen Y Q, Li R H 2019 J. Appl. Spectrosc. 86 353Google Scholar

    [12]

    Kang J, Chen Y Q, Li R H 2019 Spectrochim. Acta, Part B 161 105711Google Scholar

    [13]

    Jiang Y H, Li R H, Chen Y Q 2019 J. Anal. At. Spectrom. 34 1838Google Scholar

    [14]

    He X Y, Li R H, Wang F J 2019 Plasma Sci. Technol. 21 034005Google Scholar

    [15]

    Ciucci A, Corsi M, Palleschi V, Rastelli S, Tognoni E 1999 Appl. Spectrosc. 53 960Google Scholar

    [16]

    Zmerli B, Ben Nessib N, Dimitrijevi M S, Sahal-Bréchot S 2010 Phys. Scr. 82 055301Google Scholar

    [17]

    Gao J K, Kang J, Li R H, Chen Y Q 2020 Appl. Opt. 59 4091Google Scholar

    [18]

    Cristoforetti G, Giacomo A D, Dell’Aglio M, Legnaioli S, Tognoni E, Palleschi V, Omenetto N 2010 Spectrochim. Acta, Part B 65 86Google Scholar

    [19]

    Regemorter H V 1962 Astrophys. J. 136 906Google Scholar

    [20]

    Aragon C, Aguilera J A, Penalba F 1999 Appl. Spectrosc. 53 1259Google Scholar

    [21]

    Chen Z J, Li H K, Zhao F, Li R H 2008 J. Anal. At. Spectrom. 23 871Google Scholar

  • 图 1  基于光纤激光器的HRR LA-SIBS的实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup of fiber laser based HRR LA-SIBS.

    图 2  校准后的2号样品的局部光谱图

    Fig. 2.  The calibrated partial spectrum of sample No. 2.

    图 3  用于测定等离子体温度的玻尔兹曼图

    Fig. 3.  Boltzmann plots used to estimate the plasma temperature.

    图 4  Cu I 510.47 nm谱线的洛伦兹拟合图

    Fig. 4.  Lorentzian fit of Cu I line.

    图 5  校准后的2号样品的局部光谱图

    Fig. 5.  The calibrated partial spectrum of sample No.2.

    图 6  用HRR LA-SIBS分析铋黄铜中铋、铅和锡的校正曲线 (a) Bi; (b) Pb; (c) Sn

    Fig. 6.  Calibration curves of bismuth, lead and tin in bismuth brass analyzed with HRR LA-SIBS: (a) Bi; (b) Pb; (c) Sn.

    表 1  标准样品中铋、铅和锡元素的质量分数

    Table 1.  List of the mass fraction (%) of bismuth, lead and tin in standard samples.

    Sample No.BiPbSn
    13.0020.00541.038
    20.4140.1050.306
    31.5610.01610.518
    40.8260.02092.007
    50.1080.00593.020
    60.0058
    下载: 导出CSV

    表 2  计算等离子体温度所选择的谱线及相应能级与跃迁参数列表

    Table 2.  List of the energy level and transition probability of the selected lines for plasma temperature calculation.

    Species$\lambda $/nmA/s–1gkEk/eV
    Cu Ⅰ261.833.07 × 10746.120
    Cu Ⅰ282.430.78 × 10765.780
    Cu Ⅰ306.341.55 × 10645.688
    Cu Ⅰ319.401.55 × 10645.523
    Cu Ⅰ333.780.38 × 10685.102
    Cu Ⅰ406.262.10 × 10766.868
    Cu Ⅰ510.550.20 × 10743.820
    Cu Ⅰ515.320.60 × 10846.190
    Zn Ⅰ307.580.38 × 10634.030
    Zn Ⅰ328.239.00 × 10737.780
    Zn Ⅰ330.251.20 × 10857.783
    Zn Ⅰ334.501.70 × 10877.783
    Sn Ⅰ242.941.50 × 10875.527
    Sn Ⅰ270.656.60 × 10754.789
    Sn Ⅰ283.991.70 × 10854.789
    Sn Ⅰ286.335.40 × 10734.329
    Sn Ⅰ300.913.80 × 10734.329
    Sn Ⅰ303.412.00 × 10814.295
    Sn Ⅰ317.501.00 × 10834.329
    Sn Ⅰ326.232.70 × 10834.867
    下载: 导出CSV

    表 3  铋黄铜中铋、铅、锡三元素的HRR LA-SIBS分析结果

    Table 3.  Analytical results of bismuth, lead and tin in bismuth brass with HRR LA-SIBS.

    Analytical lineSσBR2LOD/10–6
    Bi Ⅰ 306.77 nm1.8180.001550.9825.5
    Pb Ⅰ 405.78 nm1.3760.00290.9864.2
    Sn Ⅰ 326.23 nm0.2100.00220.96316.5
    下载: 导出CSV
    Baidu
  • [1]

    肖来荣, 舒学鹏, 易丹青, 张路怀, 覃静丽, 胡加瑞 2009 中南大学学报 (自然科学版) 40 117

    Xiao L R, Shu X P, Yi D Q, Zhang L H, Qin J L, Hu J R 2009 J. Cent. South Univ. (Sci. Technol.) 40 117

    [2]

    Thangavel S, Dash K, Dhavile S M, Sahayam A C 2015 Talanta 131 505Google Scholar

    [3]

    Zhu D, Wang X, Ni X W, Cheng J P, Lu J 2011 Plasma Sci. Technol. 13 486Google Scholar

    [4]

    Zhao T Z, Fan Z W, Lian F Q, Liu Y, Lin W R, Mo Z Q, Nie S Z, Wang P, Xiao H, Li X, Zhong Q X, Zhang H G 2017 Spectrochim. Acta, Part B 137 64Google Scholar

    [5]

    Gojani A B 2012 ISRN Spectrosc. 2012 868561

    [6]

    崔执凤, 张先, 姚关心, 汪小丽, 许新胜, 郑贤锋, 凤尔银, 季学韩 2006 55 4506Google Scholar

    Cui Z F, Zhang X, Yao G X, Wang X L, Xu X S, Zheng X F, Feng E Y, Ji X H 2006 Acta Phys. Sin. 55 4506Google Scholar

    [7]

    陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂 2014 63 104213Google Scholar

    Chen T B, Yao M Y, Liu M H, Lin Y Z, Li W B, Zheng M L, Zhou H M 2014 Acta Phys. Sin. 63 104213Google Scholar

    [8]

    杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 62 045202Google Scholar

    Du C, Gao X, Shao Y, Song X W, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202Google Scholar

    [9]

    Li C M, Hao Z Q, Zou Z M, Zhou R, Li J M, Guo L B, Li X Y, Lu Y F, Zeng X Y 2016 Opt. Express 24 7850Google Scholar

    [10]

    Laville S, Goueguel C, Loudyi H, Vidal F, Chaker M, Mohamad S 2009 Spectrochim. Acta, Part B 64 347Google Scholar

    [11]

    Wang Y R, Kang J, Chen Y Q, Li R H 2019 J. Appl. Spectrosc. 86 353Google Scholar

    [12]

    Kang J, Chen Y Q, Li R H 2019 Spectrochim. Acta, Part B 161 105711Google Scholar

    [13]

    Jiang Y H, Li R H, Chen Y Q 2019 J. Anal. At. Spectrom. 34 1838Google Scholar

    [14]

    He X Y, Li R H, Wang F J 2019 Plasma Sci. Technol. 21 034005Google Scholar

    [15]

    Ciucci A, Corsi M, Palleschi V, Rastelli S, Tognoni E 1999 Appl. Spectrosc. 53 960Google Scholar

    [16]

    Zmerli B, Ben Nessib N, Dimitrijevi M S, Sahal-Bréchot S 2010 Phys. Scr. 82 055301Google Scholar

    [17]

    Gao J K, Kang J, Li R H, Chen Y Q 2020 Appl. Opt. 59 4091Google Scholar

    [18]

    Cristoforetti G, Giacomo A D, Dell’Aglio M, Legnaioli S, Tognoni E, Palleschi V, Omenetto N 2010 Spectrochim. Acta, Part B 65 86Google Scholar

    [19]

    Regemorter H V 1962 Astrophys. J. 136 906Google Scholar

    [20]

    Aragon C, Aguilera J A, Penalba F 1999 Appl. Spectrosc. 53 1259Google Scholar

    [21]

    Chen Z J, Li H K, Zhao F, Li R H 2008 J. Anal. At. Spectrom. 23 871Google Scholar

  • [1] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林. 基于声学扫描振镜的超声/光声双模态成像技术.  , 2022, 71(5): 050701. doi: 10.7498/aps.71.20211394
    [2] 胥守振, 黄林, 谢实梦, 迟子惠, 吴丹. 基于声学扫描振镜的超声/光声双模态成像技术.  , 2021, (): . doi: 10.7498/aps.70.20211394
    [3] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫. 气雾化辅助激光诱导击穿光谱检测水中的痕量金属元素.  , 2015, 64(2): 024212. doi: 10.7498/aps.64.024212
    [4] 王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰. 晶圆键合和激光剥离工艺对GaN基垂直结构发光二极管芯片残余应力的影响.  , 2015, 64(2): 028501. doi: 10.7498/aps.64.028501
    [5] 高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全. 基于飞秒激光等离子体丝诱导击穿光谱探测土壤重金属Cr元素含量.  , 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [6] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素.  , 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [7] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析.  , 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [8] 杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究.  , 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [9] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构.  , 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [10] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体.  , 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [11] 徐新河, 肖绍球, 甘月红, 付崇芳, 王秉中. 交指电容加载的周期性对称负磁导率人工材料研究.  , 2012, 61(12): 124103. doi: 10.7498/aps.61.124103
    [12] 刘亚红, 刘辉, 赵晓鹏. 基于小型化结构的各向同性负磁导率材料与左手材料.  , 2012, 61(8): 084103. doi: 10.7498/aps.61.084103
    [13] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究.  , 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [14] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析.  , 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [15] 唐明春, 肖绍球, 邓天伟, 柏艳英, 官剑, 王秉中. 小型化电谐振人工特异材料研究.  , 2010, 59(7): 4715-4719. doi: 10.7498/aps.59.4715
    [16] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析.  , 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [17] 武明峰, 孟繁义, 傅佳辉, 吴 群, 吴 健. 新型小型化的平面左手介质微带线及其后向波特性验证.  , 2008, 57(2): 822-826. doi: 10.7498/aps.57.822
    [18] 崔执凤, 张先燚, 姚关心, 汪小丽, 许新胜, 郑贤锋, 凤尔银, 季学韩. 铅黄铜合金中痕量元素定量分析的激光诱导击穿谱研究.  , 2006, 55(9): 4506-4513. doi: 10.7498/aps.55.4506
    [19] 武明峰, 孟繁义, 吴 群, 吴 健. 基于左手介质后向波特性的微带天线小型化研究.  , 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [20] 杨辉, 邱阳, 腾浩, 张军, 苍宇, 吕铁铮, 王兆华, 王鸿飞, 魏志义, 张杰. 4.5MW小型化全固态腔倒空飞秒掺钛蓝宝石激光器.  , 2001, 50(10): 1930-1934. doi: 10.7498/aps.50.1930
计量
  • 文章访问数:  4560
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2020-12-23
  • 上网日期:  2021-05-13
  • 刊出日期:  2021-05-20

/

返回文章
返回
Baidu
map