-
基于激光二极管侧面抽运棒状放大器的方式,研制了一台应用于空间碎片探测的高重复频率、高光束质量焦耳级的Nd:YAG纳秒激光器.激光器采用主振荡功率放大的结构,主要包括单纵模种子、预放大单元、受激布里渊散射相位共轭光束控制单元和能量提取单元四部分.在能量提取单元,为了减小热效应对光束质量的影响,降低了放大器的工作电流,采用了分束-放大-合束的方案.在重复频率100 Hz,单纵模种子注入单脉冲能量10.73 J的条件下,获得了3.31 J的能量输出.输出激光的脉冲宽度为4.58 ns,远场光束质量为2.12倍衍射极限,能量稳定性(RMS)为0.87%.With the rapid development of space technology, human activities into space are increasing, thereby producing lots of space debris. And the space debris impact is the major cause for the mechanical damage to the space crafts and the main factor affecting the service life; it even endangers the life safety of the astronauts working outside the spacecraft and pose a threat to the astronomical observation and studies. Thus, the monitoring and early warning of space debris are gradually attracting wide attention. Obviously, laser detection as a good-directivity and strong anti-jamming active detecting means has a unique advantage in terms of a round-the-clock detection. Therefore, the developing of debris-detecting laser beam source becomes the most direct and effective means for increasing the space debris detection accuracy. The laser detecting ability is restricted by the laser beam quality, the pulse energy and the repetition frequency at the same time. The beam quality could affect the ability to detect and recognize space target. The bigger the laser pulse energy, the higher the repetition frequency and the smaller the detectable debris, the stronger the detecting ability will be. A good detection effect could be achieved at 80-100 Hz laser pulse repetition frequency. A further increase of the repetition frequency will greatly increase the difficulty and cost accordingly but the improvement of the detection performance is not obvious at all. Thus, repetition frequency around 100 Hz becomes the best choice for laser space debris detection. Based on the laser diode side-pumped rod-shaped amplifier, a high-repetition-frequency and high-beam-quality of joule level Nd:YAG nanosecond laser for space debris detection is developed in this work. The laser adopts MOPA structure, mainly including single longitudinal mode, pre-amplifier unit, SBS phase-conjugate beam control unit and energy extraction unit. In the energy extraction unit, beam splitting-amplifying-combining is adopted for reducing the thermal effect on beam quality by reducing the working current of the amplifier. Under the condition of 100 Hz high repetition frequency and 10.73 J single pulse energy injected by the single longitudinal mode seed, 3.31 J output energy is gained. The output laser beam has a 4.58 ns pulse width, far field beam spot of 2.12 times the value of the diffraction limit, and 0.87% energy stability (RMS).
-
Keywords:
- diode-pumped /
- high repetition /
- nanosecond laser /
- high beam quality
[1] Dong J H, Hu Q Q 2007Chin.Opt.Lett. 5 S176
[2] Nalezyty M, Majczyna A, Wawrzaszek R, Sokolowski M 2010Proc.SPIE 7745 S178
[3] Ma X, Wang J, Zhou J, Zhu X, Chen W 2010Appl.Phys.B 103 809
[4] Zhang Z P, Yang F M, Zhang H F, Wu Z B, Chen J P, Li P, Meng W D 2012Res.Astron.Astrophys. 12 212
[5] Yang H L, Meng J Q, Ma X H, Chen W B 2014Chin.Opt.Lett. 12 96
[6] Yu H H, Gao P Q, Shen M, Guo X Z, Yang D T, Zhao Y 2016Astronomical ResearchTechnology 14 416(in Chinese)[于欢欢, 高鹏骐, 沈鸣, 郭效忠, 杨大陶, 赵有2016天文研究与技术14 416]
[7] Biro E, Weckman D C, Zhou Y 2002Metall.Mater.Trans.A 33 2019
[8] Andrebe Y, Behn R, Duval B P, Etienne P, Pitzschke A 2011Fusion Eng.Des. 86 1273
[9] Kim Y G, Lee J H, Lee J W, An Y H, Dang J J, Jo J M, Lee H Y, Chung K J, Hwang Y S, Na Y S 2015Fusion Eng.Des. 96-97 882
[10] Yoshida H, Nakatsuka M, Hatae T, Kitamura S, Sakuma T, Hamano T 2004Jpn.J.Appl.Phys. 43 L1038
[11] Yang X D, Bo Y, Peng Q J, Zhang H L, Geng A C, Cui Q J, Sun Z P, Cui D F, Xu Z Y 2006Opt.Commun. 226 39
[12] Sun W N, Wang W L, Bi G J, Zhu C, Yang W S 2006Chinese J.Lasers 33(suppl.) 20(in Chinese)[孙维娜, 王伟力, 秘国江, 朱辰, 杨文是2006中国激光33(suppl.) 20]
[13] Qiu J S, Tang X X, Fan Z W, Wang H C 2016Opt.Commun. 368 1
[14] Qiu J S, Tang X X, Fan Z W, Wang H C, Liu H 2016Appl.Opt. 55 21
[15] Qiu J S, Tang X X, Fan Z W, Chen Y Z, Ge W Q, Wang H C, Liu H 2016Acta Phys.Sin. 65 154204(in Chinese)[邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊2016 65 154204]
[16] Hasi W L J, Qiao Z, Cheng S X, Wang X Y, Zhong Z M, Zheng Z X, Lin D Y, He W M, Lu Z W 2013Opt.Commun. 311 375
-
[1] Dong J H, Hu Q Q 2007Chin.Opt.Lett. 5 S176
[2] Nalezyty M, Majczyna A, Wawrzaszek R, Sokolowski M 2010Proc.SPIE 7745 S178
[3] Ma X, Wang J, Zhou J, Zhu X, Chen W 2010Appl.Phys.B 103 809
[4] Zhang Z P, Yang F M, Zhang H F, Wu Z B, Chen J P, Li P, Meng W D 2012Res.Astron.Astrophys. 12 212
[5] Yang H L, Meng J Q, Ma X H, Chen W B 2014Chin.Opt.Lett. 12 96
[6] Yu H H, Gao P Q, Shen M, Guo X Z, Yang D T, Zhao Y 2016Astronomical ResearchTechnology 14 416(in Chinese)[于欢欢, 高鹏骐, 沈鸣, 郭效忠, 杨大陶, 赵有2016天文研究与技术14 416]
[7] Biro E, Weckman D C, Zhou Y 2002Metall.Mater.Trans.A 33 2019
[8] Andrebe Y, Behn R, Duval B P, Etienne P, Pitzschke A 2011Fusion Eng.Des. 86 1273
[9] Kim Y G, Lee J H, Lee J W, An Y H, Dang J J, Jo J M, Lee H Y, Chung K J, Hwang Y S, Na Y S 2015Fusion Eng.Des. 96-97 882
[10] Yoshida H, Nakatsuka M, Hatae T, Kitamura S, Sakuma T, Hamano T 2004Jpn.J.Appl.Phys. 43 L1038
[11] Yang X D, Bo Y, Peng Q J, Zhang H L, Geng A C, Cui Q J, Sun Z P, Cui D F, Xu Z Y 2006Opt.Commun. 226 39
[12] Sun W N, Wang W L, Bi G J, Zhu C, Yang W S 2006Chinese J.Lasers 33(suppl.) 20(in Chinese)[孙维娜, 王伟力, 秘国江, 朱辰, 杨文是2006中国激光33(suppl.) 20]
[13] Qiu J S, Tang X X, Fan Z W, Wang H C 2016Opt.Commun. 368 1
[14] Qiu J S, Tang X X, Fan Z W, Wang H C, Liu H 2016Appl.Opt. 55 21
[15] Qiu J S, Tang X X, Fan Z W, Chen Y Z, Ge W Q, Wang H C, Liu H 2016Acta Phys.Sin. 65 154204(in Chinese)[邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊2016 65 154204]
[16] Hasi W L J, Qiao Z, Cheng S X, Wang X Y, Zhong Z M, Zheng Z X, Lin D Y, He W M, Lu Z W 2013Opt.Commun. 311 375
计量
- 文章访问数: 6907
- PDF下载量: 337
- 被引次数: 0