Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An electromagnetic street scattering channel model for outdoor vehicular-to-vehicular communication systems

Zhou Jie Yao Ying-Li Shao Gen-Fu Shen Xiao-Yan Liu Peng

Citation:

An electromagnetic street scattering channel model for outdoor vehicular-to-vehicular communication systems

Zhou Jie, Yao Ying-Li, Shao Gen-Fu, Shen Xiao-Yan, Liu Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The vehicular-to-vehicular (V2V) communications have recently received great attention due to some traffic telematic applications that make transportation safer, more efficient, and more environmentally friendly. Reliable traffic telematic applications and services require V2V wireless communication systems to be able to provide robust connectivity. To develop such wireless communication systems and standards, accurate channel models for the V2V communication systems are required. In this paper, a geometric street scattering channel model for a V2V communication system is presented under line-of-sight (LOS) and non-LOS (NLOS) propagation conditions. Starting from the geometric model, a stochastic reference channel model is developed, where the scatterers are uniformly distributed in rectangles in the form of stripes parallel to both sides of the street. A typical propagation scenario for the proposed model is presented, where the buildings and the trees can be considered as scatterers. Analytical expressions for the probability density functions (PDFs) of the angle-of-departure (AOD) and the angle-of-arrival (AOA) are derived. By obtaining the PDF of the total Doppler frequency, the Doppler power spectral density (PSD) and the autocorrelation function (ACF) of the proposed model are also investigated and computed, assuming that the mobile transmitter (MT) and the mobile receiver (MR) are moving, while the surrounding scatterers are fixed. In this respect the underlying radio channel model differs from the traditional cellular channels. We can draw the conclusion that the PDFs of AOD and AOA first increase and then decrease within a certain angle range; the Doppler power spectral density of the signal in the outdoor street environment presents the peak value in fmax. In addition, while the Rice distribution factor is larger, the value of the autocorrelation function increases relatively, the stability of the fluctuation increases correspondingly as well. To validate the reference channel model, its Doppler parameters are compared with those of a real-world measured channel for urban and rural areas. The numerical results show a good fitting of the theoretical results to the computer simulations. In the proposed geometry-based channel model, we not only study the influence of the street scatterers on the performance of V2V communication system, but also broaden the research of the channel modeling of outdoor wireless communication in turn. To evaluate the propagation characteristics of the outdoor V2V communication systems and the simulation of wireless communication system, this paper provides a powerful research tool.
      Corresponding author: Yao Ying-Li, yaoyingli2000@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471153), the Jiangsu Provincial Research Scheme of Natural Science for Higher Education Institute, China (Grant No. 14KJA510001), the China Postdoctoral Foundation (Grant No. 010986678), and the Scientific and Technological Support Project (Industry) of Jiangsu Province, China (Grant No. BE2011195).
    [1]

    Qu F, Wang F Y, Yang L 2010 IEEE Commun. Magazine 48 136

    [2]

    Ptzold M, Hogstad B O 2004 Proc. 60th IEEE Semiannual Veh. Technol. Conf. Los Angeles, USA, September 1-4, 2004 p144

    [3]

    Zhou J, Jiang H, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 140506 (in Chinese) [周杰, 江浩, 菊池久和, 邵根富 2014 63 140506]

    [4]

    Ptzold M, Hogstad B O 2008 Wireless Commun. Mobile Computing 8 597

    [5]

    Oda Y, Tsunekawa K, Hatay M 2000 IEEE Antennas and Propagation for Wireless Communications Waltham, Massachusetts, November 6-8, 2000 pp87-90

    [6]

    Ptzold M, Hogstad B O 2004 Wireless Commun. Mobile Computing. 4 727

    [7]

    Byers G J, Takawira F 2004 IEEE Trans. Veh. Technol. 53 634

    [8]

    Ma Y, Ptzold M 2007 International Symposium on Wireless Personal Multimedia Communications, India, December 3-4, 2007 pp380-384

    [9]

    Kong S H 2009 IEEE Trans. Wireless Commun. 5 2609

    [10]

    Akki A S, Haber F 1986 IEEE Trans. Veh. Technol. 35 2

    [11]

    Chelli A, Ptzold M 2007 Proc. 4th IEEE International Symposium on Wireless Communication Systems Trondheim, Norway, Oct. 4-9, 2007 pp792-797

    [12]

    Chelli A, Ptzold M 2009 Proc. Wireless Communications and Signal Processing Nanjing, China, Nov. 9-11, 2009 pp1-5

    [13]

    Ma Y, Ptzold M 2010 Proc. Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) Moscow, Russia, Oct. 3-7, 2010 p777

    [14]

    Ma Y, Ptzold M 2010 Proc. 71st IEEE Veh. Technol. Conf., VTC 2010-Spring Taipei, Taiwan, May 4-10, 2010 p1

    [15]

    Jiang H, Zhou J 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰 2014 63 048702]

    [16]

    Gutierrez C A, Ptzold M 2009 Workshop on Mobile Computing and Networking Technol. Petersburg, Russia, February 4-7, 2009 pp1-5

    [17]

    Zhou J, Cao Z, Kikuchi H 2015 Journal of Harbin Engineering University 36 1153 (in Chinese) [周杰, 曹志钢, 菊池久和 2015 哈尔滨工程大学学报 36 1153]

    [18]

    Janaswamy R 2002 IEEE Trans. Veh. Technol. 51 1242

    [19]

    Baltzis K B, Sahalos J N 2008 Wireless Personal Commun. 51 329

    [20]

    Tan I, Wanbin T, Laberteaux K, Bahai A 2008 Proc. IEEE ICC'08, 5 4882

    [21]

    Alsehaili M, Noghanian S R, Sebak A 2010 Prog. Electromagnet. Res. 109 191

    [22]

    Zhou J, Cao Z, Kikuchi H 2014 IET Commun. 8 1

    [23]

    Avazov N, Ptzold M 2011 Adv. Technol. for Commun. (ATC), 2011 International Conf. on. IEEE 2011 224

    [24]

    Avazov N, Ptzold M 2013 Personal Indoor and Mobile Radio Commun. (PIMRC), 2013 IEEE 24th International Symposium on. IEEE 2013 253

    [25]

    Zhou J, Wang Y L 2014 Acta Phys. Sin. 63 240507 (in Chinese) [周杰, 王亚林 2014 63 240507]

    [26]

    Papoulis A, Pillai S U 2002 Probability, Random Variables, and Stochastic Processes (USA: Tata McGraw-Hill Education) pp89-98

  • [1]

    Qu F, Wang F Y, Yang L 2010 IEEE Commun. Magazine 48 136

    [2]

    Ptzold M, Hogstad B O 2004 Proc. 60th IEEE Semiannual Veh. Technol. Conf. Los Angeles, USA, September 1-4, 2004 p144

    [3]

    Zhou J, Jiang H, Hisakazu K, Shao G F 2014 Acta Phys. Sin. 63 140506 (in Chinese) [周杰, 江浩, 菊池久和, 邵根富 2014 63 140506]

    [4]

    Ptzold M, Hogstad B O 2008 Wireless Commun. Mobile Computing 8 597

    [5]

    Oda Y, Tsunekawa K, Hatay M 2000 IEEE Antennas and Propagation for Wireless Communications Waltham, Massachusetts, November 6-8, 2000 pp87-90

    [6]

    Ptzold M, Hogstad B O 2004 Wireless Commun. Mobile Computing. 4 727

    [7]

    Byers G J, Takawira F 2004 IEEE Trans. Veh. Technol. 53 634

    [8]

    Ma Y, Ptzold M 2007 International Symposium on Wireless Personal Multimedia Communications, India, December 3-4, 2007 pp380-384

    [9]

    Kong S H 2009 IEEE Trans. Wireless Commun. 5 2609

    [10]

    Akki A S, Haber F 1986 IEEE Trans. Veh. Technol. 35 2

    [11]

    Chelli A, Ptzold M 2007 Proc. 4th IEEE International Symposium on Wireless Communication Systems Trondheim, Norway, Oct. 4-9, 2007 pp792-797

    [12]

    Chelli A, Ptzold M 2009 Proc. Wireless Communications and Signal Processing Nanjing, China, Nov. 9-11, 2009 pp1-5

    [13]

    Ma Y, Ptzold M 2010 Proc. Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) Moscow, Russia, Oct. 3-7, 2010 p777

    [14]

    Ma Y, Ptzold M 2010 Proc. 71st IEEE Veh. Technol. Conf., VTC 2010-Spring Taipei, Taiwan, May 4-10, 2010 p1

    [15]

    Jiang H, Zhou J 2014 Acta Phys. Sin. 63 048702 (in Chinese) [江浩, 周杰 2014 63 048702]

    [16]

    Gutierrez C A, Ptzold M 2009 Workshop on Mobile Computing and Networking Technol. Petersburg, Russia, February 4-7, 2009 pp1-5

    [17]

    Zhou J, Cao Z, Kikuchi H 2015 Journal of Harbin Engineering University 36 1153 (in Chinese) [周杰, 曹志钢, 菊池久和 2015 哈尔滨工程大学学报 36 1153]

    [18]

    Janaswamy R 2002 IEEE Trans. Veh. Technol. 51 1242

    [19]

    Baltzis K B, Sahalos J N 2008 Wireless Personal Commun. 51 329

    [20]

    Tan I, Wanbin T, Laberteaux K, Bahai A 2008 Proc. IEEE ICC'08, 5 4882

    [21]

    Alsehaili M, Noghanian S R, Sebak A 2010 Prog. Electromagnet. Res. 109 191

    [22]

    Zhou J, Cao Z, Kikuchi H 2014 IET Commun. 8 1

    [23]

    Avazov N, Ptzold M 2011 Adv. Technol. for Commun. (ATC), 2011 International Conf. on. IEEE 2011 224

    [24]

    Avazov N, Ptzold M 2013 Personal Indoor and Mobile Radio Commun. (PIMRC), 2013 IEEE 24th International Symposium on. IEEE 2013 253

    [25]

    Zhou J, Wang Y L 2014 Acta Phys. Sin. 63 240507 (in Chinese) [周杰, 王亚林 2014 63 240507]

    [26]

    Papoulis A, Pillai S U 2002 Probability, Random Variables, and Stochastic Processes (USA: Tata McGraw-Hill Education) pp89-98

  • [1] Lu Xi-Cheng, Qiu Yang, Tian Jin, Wang Hai-Bo, Jiang Ling, Chen Xin. Analysis of time reversal cavity characteristics based on multipath channel model. Acta Physica Sinica, 2022, 71(2): 024101. doi: 10.7498/aps.71.20210701
    [2] Analysis of Time Reversal Cavity Characteristics Based on Multipath Channel Model. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210701
    [3] Yuan Lin, Yang Xue-Song, Wang Bing-Zhong. Prediction of time reversal channel with neural network optimized by empirical knowledge based genetic algorithm. Acta Physica Sinica, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [4] Zhang Jin-Peng, Zhang Yu-Shi, Li Qing-Liang, Wu Jia-Ji. A time-varying Doppler spectrum model of radar sea clutter based on different scattering mechanisms. Acta Physica Sinica, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612
    [5] Hong Wei-Yi. “Inverted-image” frequency chirp induced by self-phase modulation in highly noninstantaneous medium. Acta Physica Sinica, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [6] Chen Peng, Cai You-Xun, Cai Xiao-Fei, Shi Li-Hui, Yu Xu-Tao. Quantum channel establishing rate model of quantum communication network based on entangled states. Acta Physica Sinica, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [7] null. Indoor wireless propagation under line of sight and no line of sight comprehensive channel modeling. Acta Physica Sinica, 2015, 64(17): 170505. doi: 10.7498/aps.64.170505
    [8] He Sheng-Zhong, Zhou Guo-Hua, Xu Jian-Ping, Wu Song-Rong, Chen Li. Effect of output capacitance time-constant on dynamic characteristics of V2-controlled buck converter. Acta Physica Sinica, 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [9] Zhou Jie, Jiang Hao, Hisakazu Kikuchi, Shao Gen-Fu. Geometrical statistical channel model and performance investigation for multi-antenna systems in wireless communications. Acta Physica Sinica, 2014, 63(14): 140506. doi: 10.7498/aps.63.140506
    [10] Jiang Hao, Zhou Jie, Hisakazu Kikuchi, Shao Gen-Fu. Analysis of Doppler shift in a three-dimensional scattering channel model. Acta Physica Sinica, 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [11] Zhou Jie, Wang Ya-Lin, Hisakazu Kikuchi. Doppler power spectrum density and multi-antenna system performance in three-dimensional environment. Acta Physica Sinica, 2014, 63(24): 240507. doi: 10.7498/aps.63.240507
    [12] Hai Lin, Zhang Ye-Rong, Pan Can-Lin. Correlation-based analytical modeling of MIMO systems with hybrid-diversity antenna. Acta Physica Sinica, 2013, 62(23): 238402. doi: 10.7498/aps.62.238402
    [13] Yang Ze-Jin, Gao Qing-He, Guo Yun-Dong, Cheng Xin-Lu, Zhu Zheng-He, Yang Xiang-Dong. The structure and potential energy function of LiO2(C2V,X2A2) molecule. Acta Physica Sinica, 2007, 56(10): 5723-5726. doi: 10.7498/aps.56.5723
    [14] Wu Jia-Gui, Wu Zheng-Mao, Lin Xiao-Dong, Zhang Yi, Zhong Dong-Zhou, Xia Guang-Qiong. Theoretical model and characteristics investigations of dual-channel optical chaotic communication system. Acta Physica Sinica, 2005, 54(9): 4169-4175. doi: 10.7498/aps.54.4169
    [15] Huang Xiao-Yi, Ma Dong-Peng. . Acta Physica Sinica, 1995, 44(8): 1310-1320. doi: 10.7498/aps.44.1310
    [16] ZHONG XI-HUA, ZHOU YUE-MING, ZHU YA-FEN. A STUDY ON THE SPECTRA OF SELF-SIMILAR TIME INFORMATIONS. Acta Physica Sinica, 1991, 40(12): 1934-1941. doi: 10.7498/aps.40.1934
    [17] ZHONG XI-HUA. THE SPECTRAL FUNCTIONS OF SELF-SIMILAR STRUCTURES. Acta Physica Sinica, 1990, 39(6): 59-66. doi: 10.7498/aps.39.59
    [18] XU ZHANG-LONG, LIU GU, JI ZHEN-GUO, ZHOU XIAO-XIA. A ARUPS INVESTIGATION OF TWO SURFACE SUPERSTRU-CTURES (4×1)-O AND (2×2)-S ON VANADIUM(001) SURFACES. Acta Physica Sinica, 1988, 37(2): 311-317. doi: 10.7498/aps.37.311
    [19] RUAN JING-HUI, CHEN GUI-YING, CHENG ZHI-XU, GOU CHENG, YANG TONG-HUA, CHEN LIN-FU, ZHOU LI, YIN DAO-LE. RELATION BETWEEN PHONON SPECTRA IN (Hf0.5Zr0.5V2)Hx SYSTEM AND ITS SUPERCONDUCTIVITY. Acta Physica Sinica, 1983, 32(9): 1187-1190. doi: 10.7498/aps.32.1187
    [20] XU ZHEN-YONG. SPACE-TIME CORRELATION FUNCTION OF A NOISE FIELD IN RANDOM MULTIPATH DISPERSION CHANNELS. Acta Physica Sinica, 1976, 25(3): 246-253. doi: 10.7498/aps.25.246
Metrics
  • Abstract views:  6082
  • PDF Downloads:  342
  • Cited By: 0
Publishing process
  • Received Date:  27 January 2016
  • Accepted Date:  16 May 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map