Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High tunable dielectric properties of Ce and Mg alternately doped Ba0.6Sr0.4TiO3 films

Hu Yi-Ming Liao Jia-Xuan Yang Han-Yu Wang Si-Zhe Wu Meng-Qiang Xu Zi-Qiang Feng Ting-Ting Gong Feng

Citation:

High tunable dielectric properties of Ce and Mg alternately doped Ba0.6Sr0.4TiO3 films

Hu Yi-Ming, Liao Jia-Xuan, Yang Han-Yu, Wang Si-Zhe, Wu Meng-Qiang, Xu Zi-Qiang, Feng Ting-Ting, Gong Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For barium strontium titanate (Ba0.6Ti0.4TiO3, BST) films used in tunable microwave devices, they must have excellent structural characteristics and outstanding combination of dielectric properties i.e., a low loss tangent over the range of operating direct current (DC) bias voltages, a moderate dielectric constant for impedance matching purpose, a large variation in the dielectric constant with applied dc bias (high tunability, in particular high tunability at low applied dc bias), etc. To achieve such a high objective, the following two great improvements are carried out. A normal sol-gel method is modified to prepare multilayer BST films layer by layer. Each multilayer BST film is composed of six layers, where each layer is preheated at 600 ℃, thus the layers from the first layer to the sixth layer are successively preheated once to six times. Thus each BST film is smooth and dense, and contains almost no organic residues. On the other hand, as a new doped mode, Ce/Mn alternate doping is performed. For every six layer-BST films, when the odd number layers are doped with Ce, then the even number layers are doped with Mg, vice versa. The above two improvements result from the fact that Ce doping, Mg doping and Y and Mn alternate doping could make BST thin films significantly improve the dielectric tunability, reduce the dielectric loss, and improve the combination of dielectric properties, respectively. According to the above two improvements, 1 mol% Ce and 3 mol% Mg alternately doped BST thin films are prepared on Pt/Ti/SiO2/Si wafers (substrates). The prepared BST films are denoted by the doped element as follows: Ce/Mg/Ce/Mg/Ce/Mg with Ce doped BST layer is referred to as the first layer (for short Ce/Mg) and Mg/Ce/Mg/Ce/Mg/Ce with Mg doped BST layer as the first layer (Mg/Ce), and the structure and dielectric properties of the films are studied. X-ray diffraction results show that two films present cubic perovskite structures, mainly grow along (110) crystal face, and show strong crystallization. SEM results indicate that the surface morphologies of two films are greatly improved, and Ce or Mg doped BST layer as the first layer can be well matched with the substrate. The surface of the Ce/Mg film is more uniform and denser with slightly smaller grains and weaker crystallization. XPS results demonstrate that the non-perovskite structures on the surfaces of two films are significantly reduced. Each of the two films has high tunability at low applied dc bias and high figure of merit (FOM). The Mg/Ce film shows more stable combination of dielectric properties in a high frequency range. The Ce/Mg film shows more excellent combination of dielectric properties and higher dielectric strength in a low frequency range, where when the testing frequency is 100 kHz, 10 V, 20 V and 40 V applied dc bias voltages correspond to tunabilities of 47.4%, 63.6% and 71.8%, and FOMs of 71.8%, and 27.1, 77.5 and 86.5, respectively. Such good dielectric properties can fully satisfy the requirements for tunable microwave device applications. The relevant mechanisms are also analyzed.
      Corresponding author: Liao Jia-Xuan, jxliao@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51172034, 61101030) and the Science and Technology Project of Sichuan Province, China (Grant Nos. 2015GZ0047, 2015GZ0130).
    [1]

    Padminni P, Taylor T R, Lefevre M J, Nagra A S, York R A, Speck J S 1999 Appl. Phys. Lett. 75 3186

    [2]

    Pervez N K, Hansen P J, York R A 2004 Appl. Phys. Lett. 85 4451

    [3]

    Zou C, Xu Z M, Ma Z C, Wu X H, Peng J 2015 Acta Phys. Sin. 64 118101 (in Chinese) [邹超, 徐智谋, 马智超, 武兴会, 彭静 2015 64 118101]

    [4]

    Cole M W, Nothwang W D, Hubbard C, Ngo E, Ervin M 2003 J. Appl. Phys. 93 9218

    [5]

    Cole M W, Joshi P C, Ervin M H 2001 J. Appl. Phys. 89 6336

    [6]

    Wang S Y, Cheng B L, Wang C, Dai S Y, Jin K J, Zhou Y L, Lu H B, Chen Z H, Yang G Z 2006 J. Appl. Phys. 99 013504

    [7]

    Liao J X, Pan X F, Wang H Q, Zhang J, Fu X J, Tian Z 2009 Rare Metal Mat. Eng. 38 1987

    [8]

    Chang W, Sengupta L 2002 J. Appl. Phys. 92 3941

    [9]

    Cole M W, Joshi P C, Ervin M H, Wooda M C, Pfeffer R L 2000 Thin Solid Films 374 34

    [10]

    Liao J X, Xu Z Q, Wei X B, Wei X B, Wang P, Yang B C 2012 Surf. Coat. Tech. 206 4518

    [11]

    Wang B, Liao J X, Zhang B, Xu C Y 2013 Rare Metal Mat. Eng. 42 96 (in Chinese) [王滨, 廖家轩, 张宝, 徐从玉 2013 稀有金属材料与工程 42 96]

    [12]

    Zhou Q G, Zhai J W, Yao X 2007 J. Inorg. Mater. 22 519 (in Chinese) [周歧刚, 翟继卫, 姚熹 2007 无机材料学报 22 519]

    [13]

    Liao J X, Wei X B, Xu Z Q, Wei X B, Wang P 2012 Mater. Chem. Phys. 135 1030

    [14]

    Huang J Q, Liao J X, Wang P, Zhang W F, Wei X B, Xu Z Q 2014 Surf. Coat. Tech. 251 307

    [15]

    Huang J Q, Liao J X, Zhang W F, Wang S Z, Yang H Y, Wu M Q 2015 Integr. Ferroelectr. 162 94

    [16]

    Liao J X, Zhang W F, Huang J Q, Wang P, Yang H Y, Wang S Z, Wu M Q 2015 Integr. Ferroelectr. 164 74

    [17]

    Bao J B, Ren T L, Liu J S, Liu L T, Li Z J, Li X J 2002 PiezoElectr. Acoustoopt 24 389

    [18]

    Ahn K H, Baik S, Kim S S 2002 J. Appl. Phys. 92 2651

    [19]

    Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033

    [20]

    Yu J, Liao J X, Jin L, Wei X B, Wang P, Wei X B, Xu Z Q 2011 Acta Phys. Sin. 60 077701 (in Chinese) [俞健, 廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强 2011 60 077701]

    [21]

    Peng L S, Xi X X, Moeckly B H, Alpay S P 2003 Appl. Phys. Lett. 83 4592

    [22]

    Craciun V, Singh R K 2000 Appl. Phys. Lett. 76 1932

    [23]

    Liao J X, Wei X B, Xu Z Q, Wang P 2014 Vacuum 107 291

    [24]

    Kim K T, Kim C I 2003 Microelectron. Eng. 66 835

    [25]

    Kim K T, Kim C I 2005 Thin Solid Films 472 26

    [26]

    Wang S Y, Cheng B L, Wang C, Redfern S A T, Dai S Y, Jin K J, Lu H B, Zhou Y L, Chen Z H, Yang G Z 2005 J. Phys. D: Appl. Phys. 38 2253

    [27]

    Cole M W, Hubbard C, Ngo E, Ervin M, Wood M 2002 J. Appl. Phys. 92 475

    [28]

    Wu Q C, Wang H P, Tian Q, Liao H C 2007 Proceedings of the 6th Conference on Functional Materials and Applications in China Wuhan, China, November 15-19, 2007 p693 (in Chinese) [吴其昌, 王慧萍, 田琼, 廖恒成 2007 第六届中国功能材料及其应用学术会议论文集 武汉, 中国, 11月15日-11月19日, 2007 p693]

  • [1]

    Padminni P, Taylor T R, Lefevre M J, Nagra A S, York R A, Speck J S 1999 Appl. Phys. Lett. 75 3186

    [2]

    Pervez N K, Hansen P J, York R A 2004 Appl. Phys. Lett. 85 4451

    [3]

    Zou C, Xu Z M, Ma Z C, Wu X H, Peng J 2015 Acta Phys. Sin. 64 118101 (in Chinese) [邹超, 徐智谋, 马智超, 武兴会, 彭静 2015 64 118101]

    [4]

    Cole M W, Nothwang W D, Hubbard C, Ngo E, Ervin M 2003 J. Appl. Phys. 93 9218

    [5]

    Cole M W, Joshi P C, Ervin M H 2001 J. Appl. Phys. 89 6336

    [6]

    Wang S Y, Cheng B L, Wang C, Dai S Y, Jin K J, Zhou Y L, Lu H B, Chen Z H, Yang G Z 2006 J. Appl. Phys. 99 013504

    [7]

    Liao J X, Pan X F, Wang H Q, Zhang J, Fu X J, Tian Z 2009 Rare Metal Mat. Eng. 38 1987

    [8]

    Chang W, Sengupta L 2002 J. Appl. Phys. 92 3941

    [9]

    Cole M W, Joshi P C, Ervin M H, Wooda M C, Pfeffer R L 2000 Thin Solid Films 374 34

    [10]

    Liao J X, Xu Z Q, Wei X B, Wei X B, Wang P, Yang B C 2012 Surf. Coat. Tech. 206 4518

    [11]

    Wang B, Liao J X, Zhang B, Xu C Y 2013 Rare Metal Mat. Eng. 42 96 (in Chinese) [王滨, 廖家轩, 张宝, 徐从玉 2013 稀有金属材料与工程 42 96]

    [12]

    Zhou Q G, Zhai J W, Yao X 2007 J. Inorg. Mater. 22 519 (in Chinese) [周歧刚, 翟继卫, 姚熹 2007 无机材料学报 22 519]

    [13]

    Liao J X, Wei X B, Xu Z Q, Wei X B, Wang P 2012 Mater. Chem. Phys. 135 1030

    [14]

    Huang J Q, Liao J X, Wang P, Zhang W F, Wei X B, Xu Z Q 2014 Surf. Coat. Tech. 251 307

    [15]

    Huang J Q, Liao J X, Zhang W F, Wang S Z, Yang H Y, Wu M Q 2015 Integr. Ferroelectr. 162 94

    [16]

    Liao J X, Zhang W F, Huang J Q, Wang P, Yang H Y, Wang S Z, Wu M Q 2015 Integr. Ferroelectr. 164 74

    [17]

    Bao J B, Ren T L, Liu J S, Liu L T, Li Z J, Li X J 2002 PiezoElectr. Acoustoopt 24 389

    [18]

    Ahn K H, Baik S, Kim S S 2002 J. Appl. Phys. 92 2651

    [19]

    Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033

    [20]

    Yu J, Liao J X, Jin L, Wei X B, Wang P, Wei X B, Xu Z Q 2011 Acta Phys. Sin. 60 077701 (in Chinese) [俞健, 廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强 2011 60 077701]

    [21]

    Peng L S, Xi X X, Moeckly B H, Alpay S P 2003 Appl. Phys. Lett. 83 4592

    [22]

    Craciun V, Singh R K 2000 Appl. Phys. Lett. 76 1932

    [23]

    Liao J X, Wei X B, Xu Z Q, Wang P 2014 Vacuum 107 291

    [24]

    Kim K T, Kim C I 2003 Microelectron. Eng. 66 835

    [25]

    Kim K T, Kim C I 2005 Thin Solid Films 472 26

    [26]

    Wang S Y, Cheng B L, Wang C, Redfern S A T, Dai S Y, Jin K J, Lu H B, Zhou Y L, Chen Z H, Yang G Z 2005 J. Phys. D: Appl. Phys. 38 2253

    [27]

    Cole M W, Hubbard C, Ngo E, Ervin M, Wood M 2002 J. Appl. Phys. 92 475

    [28]

    Wu Q C, Wang H P, Tian Q, Liao H C 2007 Proceedings of the 6th Conference on Functional Materials and Applications in China Wuhan, China, November 15-19, 2007 p693 (in Chinese) [吴其昌, 王慧萍, 田琼, 廖恒成 2007 第六届中国功能材料及其应用学术会议论文集 武汉, 中国, 11月15日-11月19日, 2007 p693]

  • [1] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [2] Feng Qi, Li Meng-Kai, Tang Hai-Tong, Wang Xiao-Dong, Gao Zhong-Min, Meng Fan-Ling. Dielectric properties of graphene/poly(vinyl alcohol)/poly (vinylidene fluoride) nanocomposites films. Acta Physica Sinica, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [3] Zhao Xue-Tong, Liao Rui-Jin, Li Jian-Ying, Wang Fei-Peng. Effect of direct current degradation on dielectric property of CaCu3Ti4O12 ceramic. Acta Physica Sinica, 2015, 64(12): 127701. doi: 10.7498/aps.64.127701
    [4] Zhao Qiang, Wen Qi-Ye, Dai Yu-Han, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren, Zhang Wan-Li. Tunability THz metamaterials base on the dielectric nonlinear of barium strontium titanate. Acta Physica Sinica, 2013, 62(4): 044104. doi: 10.7498/aps.62.044104
    [5] Li Zhi-Min, Shi Jian-Zhang, Wei Xiao-Hei, Li Pei-Xian, Huang Yun-Xia, Li Gui-Fang, Hao Yue. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Physica Sinica, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [6] Zhou Jing, Liu Cun-Jin, Li Ru, Chen Wen. Effects of heterogeneous interfaces on microstructure and dielectric properties of Ca(Mg1/3Nb2/3)O3/CaTiO3 multilayered thin films. Acta Physica Sinica, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [7] Chen Chao, Jiang Xiang-Ping, Wei Wei, Li Xiao-Hong, Wei Hong-Bin, Song Fu-Sheng. Micro-morphology and dielectric properties for (K0.45Na0.55)NbO3 lead-free piezoelectric crystal. Acta Physica Sinica, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [8] Yu Jian, Liao Jia-Xuan, Jin Long, Wei Xiong-Bang, Wang Peng, Wei Xu-Bo, Xu Zi-Qiang. Preparation and dielectric properties of BST films with high tunability. Acta Physica Sinica, 2011, 60(7): 077701. doi: 10.7498/aps.60.077701
    [9] Ding Nan, Tang Xin-Gui, Kuang Shu-Juan, Wu Jun-Bo, Liu Qiu-Xiang, He Qin-Yu. Effect of MnO2 additive on the piezoelectric and dielectric properties of Ba(Zr, Ti)O3 ceramics. Acta Physica Sinica, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [10] Sun Lin, Chu Jun-Hao, Yang Ping-Xiong, Feng Chu-De. Effects of substitutions of Nd3+ for Sr2+ on the properties of SrBi2Nb2O9 ceramics and their mechanism. Acta Physica Sinica, 2009, 58(8): 5790-5797. doi: 10.7498/aps.58.5790
    [11] Shan Dan, Zhu Jun-Chuan, Jin Can, Chen Xiao-Bing. Effect of B-site equal-valent doping on ferroelectric properties of SrBi4Ti4O15 ceramics. Acta Physica Sinica, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [12] Wei Yong-Xia, Qian Xiao-Mei, Yu Xiao-Zhu, Ye Chao, Ning Zhao-Yuan, Liang Rong-Qing. Effect of O2-doping on bonding configuration and electric properties of SiCOH films prepared by decamethylcyclopentasiloxane electron cyclotron resonance plasma. Acta Physica Sinica, 2007, 56(2): 1172-1176. doi: 10.7498/aps.56.1172
    [13] Zhou Qi-Gang, Zhai Ji-Wei, Yao Xi. The influence of distribution of Na+-dopant on the structure and dielectric properties of Ba0.25Sr0.75TiO3 thin film. Acta Physica Sinica, 2007, 56(11): 6666-6673. doi: 10.7498/aps.56.6666
    [14] Zeng Tao, Dong Xian-Lin, Mao Chao-Liang, Liang Rui-Hong, Yang Hong. Effects of porosity and grain sizes on the dielectric and piezoelectric properties of porous PZT ceramics and their mechanism. Acta Physica Sinica, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [15] Ye Chao, Ning Zhao-Yuan, Xin Yu, Wang Ting-Ting, Yu Xiao-Zhu. Influence of Si—OH groups on properties and avoidance for SiCOH films prepared by decamethylcyclopentasiloxane electron cyclotron resonance plasma. Acta Physica Sinica, 2006, 55(5): 2606-2612. doi: 10.7498/aps.55.2606
    [16] Ma Jian-Hua, Sun Jing-Lan, Meng Xiang-Jian, Lin Tie, Shi Fu-Wen, Chu Jun-Hao. Dielectric and interface characteristics of SrTiO3 with a MIS structure. Acta Physica Sinica, 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
    [17] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [18] Hui Rong, Zhu Jun, Lu Wang-Ping, Mao Xiang-Yu, Qiang Feng, Chen Xiao-Bing. Dielectric study on relaxor-like phase transition of lanthanum doped bismuth layer-structured ferroelectrics. Acta Physica Sinica, 2004, 53(1): 276-281. doi: 10.7498/aps.53.276
    [19] Ma Shi-Hong, Yan Mei, Li Shu-Hong, Lu Xing-Ze, Wang Gen-Shui, Zhu Jun-Hao, Wang Wen-Cheng. Optimization of pyroelectric properties in ultrathin organized molecular films. Acta Physica Sinica, 2003, 52(1): 197-201. doi: 10.7498/aps.52.197
    [20] Liu Peng, Bian Xiao-Bing, Zhang Liang-Ying, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
Metrics
  • Abstract views:  5636
  • PDF Downloads:  242
  • Cited By: 0
Publishing process
  • Received Date:  28 March 2016
  • Accepted Date:  05 May 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map