Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A scheme of quantum packet transmission and its performance analysis based on hierarchical

Wang Lin-Fei Nie Min Yang Guang Zhang Mei-Ling Pei Chang-Xing

Citation:

A scheme of quantum packet transmission and its performance analysis based on hierarchical

Wang Lin-Fei, Nie Min, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By using quantum packet transmission technology in large scale quantum communication networks, the throughput of transmission node, network link utilization, and the anti-interference performance of communication can be effectively improved. However, the fast transmission of quantum packets is closely related to the performance of router. The bottleneck of the router performance will seriously affect the scalability of the network and the transmission efficiency of the link. In order to reduce the number of quantum packet queues in nodes of the quantum communication network and to reduce the transmission delay of quantum packets, firstly, according to the classical computer communication network structure, in our paper, we divide the quantum communication network into quantum local area network, quantum metropolitan area network and quantum wide area network. Secondly, the quantum packet format and the quantum cluster format compatible with the packet format in the computer network are determined. Then, a quantum information packet transmission scheme based on the hierarchy is proposed, to realize the end-to-end transmission of quantum information. In our scheme, the quantum packets are divided into quantum packet header information and quantum data information. Quantum dense coding mode is used to transmit the quantum packet header information, while the quantum data information uses quantum teleportation to transmit. First, the quantum packets are sent to the router of the quantum local area network at source address, then the quantum LAN router relay the packets to the quantum metropolitan area network router, the router here makes the quantum packets into quantum cluster according to destination address. Quantum clusters are transmitted in the quantum metropolitan area network and quantum wide area network, ending in the quantum metropolitan area network routing. After the quantum clusters are decomposed, they are sent to the destination address through the local area network router of each quantum packet.We analyze the number of quantum entanglement pairs and the total transmission time in our scheme. The results show that the more the routers by the quantum packet and the quantum cluster are, the more the number of quantum entanglement pairs required by the transmission of a certain quantum packet is. When the number of routers is certain, the number of entanglement pairs required in the transmission process of quantum packet and quantum cluster depends on the number of quantum packets. Finally, the theoretical analysis and calculation are carried out by Matlab simulation, the results show that hierarchical quantum packet information transmission scheme can effectively reduce the transmission time of quantum packet information in the quantum communication network, and the reduced time is related to the quantum router performance and the number of quantum packets to send: the more the number of quantum packets to send, the longer the length of packet processing time needs is and the more obvious the advantage of our scheme is. Therefore, the proposed scheme in this paper is suitable for the construction of large scale quantum communication networks.
      Corresponding author: Wang Lin-Fei, 304375220@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318) and the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013).
    [1]

    Bennet C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wooters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Ekert A 1991 Phys. Rev Lett. 67 661

    [3]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121

    [4]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar 7-10, 2000 p459

    [5]

    Ray Y W L, Henry C B C, Hui C, Tharam S D, Victor O K L, Victor C M L 2008 J. Commun. Netw-s. Kor. 10 316

    [6]

    Yurke B, Denker J S 1984 Phys. Lett. A 29 1419

    [7]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221

    [8]

    Chip E 2002 New J. Phys. 4 46

    [9]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [11]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [12]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 56 673]

    [13]

    Wang T Y, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 57 7452 (in Chinese) [王天银, 秦素娟, 温巧燕, 朱甫臣 2008 57 7452]

    [14]

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. China: Ser. G 41 332 (in Chinese) [龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学:物理学 力学 天文学 41 332]

    [15]

    Long G L, Qin G Q 2014 Physics and Engineering 24 3 (in Chinese) [龙桂鲁, 秦国卿 2014 物理与工程 2014 24 3

    [16]

    Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G, Guo G C 2009 IEEE Photonic. Tech. L. 21 575

    [17]

    Xu F X, Chen W, Wang S 2009 Chin. Sci. Bull. 54 2277 (in Chinese) [许方星, 陈巍, 王双 2009 科学通报 54 2277]

    [18]

    Zeng B Y 2009 M. S. Dissertation (Nanchang: Nanchang University ) (in Chinese) [曾宾阳 2009 硕士学位论文 (南昌: 南昌大学)]

    [19]

    Liu X H, Pei C X, Nie M 2014 J. Jinlin. Univ. Technol. Ed. 44 1177 (in Chinese) [刘晓慧, 裴昌幸, 聂敏 2014 吉林大学学报(工学版) 44 1177]

    [20]

    Wang J M 2014 M. S. Dissertation (Xian: Xian University of Electronic Science and Technology) (in Chinese) [王建民 2014 硕士学位论文 (西安: 西安电子科技大学)]

    [21]

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301 (in Chinese) [陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301]

    [22]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 64 160306]

    [23]

    Xie X R 2008 The Internet Network (Beijing: Publishing House of Electronics Industry) pp17-364 (in Chinese)[谢希仁 2008 计算机网络 (北京: 电子工业出版社) 第 17-364 页]

    [24]

    Schaet T, Barrett M D, Leibried D, Chiaverini J, Britton J, Itano W M, Jost J D, Langer C, WIneland D J 2004 Phys. Rev. Lett. 93 040505

  • [1]

    Bennet C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wooters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Ekert A 1991 Phys. Rev Lett. 67 661

    [3]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121

    [4]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar 7-10, 2000 p459

    [5]

    Ray Y W L, Henry C B C, Hui C, Tharam S D, Victor O K L, Victor C M L 2008 J. Commun. Netw-s. Kor. 10 316

    [6]

    Yurke B, Denker J S 1984 Phys. Lett. A 29 1419

    [7]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221

    [8]

    Chip E 2002 New J. Phys. 4 46

    [9]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [11]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [12]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 56 673]

    [13]

    Wang T Y, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 57 7452 (in Chinese) [王天银, 秦素娟, 温巧燕, 朱甫臣 2008 57 7452]

    [14]

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. China: Ser. G 41 332 (in Chinese) [龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学:物理学 力学 天文学 41 332]

    [15]

    Long G L, Qin G Q 2014 Physics and Engineering 24 3 (in Chinese) [龙桂鲁, 秦国卿 2014 物理与工程 2014 24 3

    [16]

    Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G, Guo G C 2009 IEEE Photonic. Tech. L. 21 575

    [17]

    Xu F X, Chen W, Wang S 2009 Chin. Sci. Bull. 54 2277 (in Chinese) [许方星, 陈巍, 王双 2009 科学通报 54 2277]

    [18]

    Zeng B Y 2009 M. S. Dissertation (Nanchang: Nanchang University ) (in Chinese) [曾宾阳 2009 硕士学位论文 (南昌: 南昌大学)]

    [19]

    Liu X H, Pei C X, Nie M 2014 J. Jinlin. Univ. Technol. Ed. 44 1177 (in Chinese) [刘晓慧, 裴昌幸, 聂敏 2014 吉林大学学报(工学版) 44 1177]

    [20]

    Wang J M 2014 M. S. Dissertation (Xian: Xian University of Electronic Science and Technology) (in Chinese) [王建民 2014 硕士学位论文 (西安: 西安电子科技大学)]

    [21]

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301 (in Chinese) [陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301]

    [22]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 64 160306]

    [23]

    Xie X R 2008 The Internet Network (Beijing: Publishing House of Electronics Industry) pp17-364 (in Chinese)[谢希仁 2008 计算机网络 (北京: 电子工业出版社) 第 17-364 页]

    [24]

    Schaet T, Barrett M D, Leibried D, Chiaverini J, Britton J, Itano W M, Jost J D, Langer C, WIneland D J 2004 Phys. Rev. Lett. 93 040505

  • [1] Chen Yi-Peng, Liu Jing-Yang, Zhu Jia-Li, Fang Wei, Wang Qin. Application of machine learning in optimal allocation of quantum communication resources. Acta Physica Sinica, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [2] Wen Zhen-Nan, Yi You-Gen, Xu Xiao-Wen, Guo Ying. Continuous variable quantum teleportation with noiseless linear amplifier. Acta Physica Sinica, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [3] Zhang Le, Yuan Xun-Feng, Tan Xiao-Dong. Teleportation of Werner state via graphene-based quantum channels under dephasing environment. Acta Physica Sinica, 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [4] Wu Ying, Li Jin-Fang, Liu Jin-Ming. Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements. Acta Physica Sinica, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [5] Jia Fang, Liu Cun-Jin, Hu Yin-Quan, Fan Hong-Yi. New formula for calculating the fidelity of teleportation and its applications. Acta Physica Sinica, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [6] Li Xi-Han. Quantum secure direct communication. Acta Physica Sinica, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [7] Nie Min, Wang Lin-Fei, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Transmission protocol and its performance analysis of quantum communication network based on packet switching. Acta Physica Sinica, 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [8] Liu Shi-You, Zheng Kai-Min, Jia Fang, Hu Li-Yun, Xie Fang-Sen. Entanglement of one- and two-mode combination squeezed thermal states and its application in quantum teleportation. Acta Physica Sinica, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [9] Zhang Pei, Zhou Xiao-Qing, Li Zhi-Wei. Identification scheme based on quantum teleportation for wireless communication networks. Acta Physica Sinica, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [10] Qiao Pan-Pan, Ahmad Abliz, Cai Jiang-Tao, Lu Jun-Zhe, Maimaitiyiming Tusun, Ribigu Maimaitiming. Quantum teleportation using superconducting charge qubits in thermal equilibrium. Acta Physica Sinica, 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [11] Zhou Xiao-Qing, Wu Yun-Wen, Zhao Han. Quantum teleportation internetworking and routing strategy. Acta Physica Sinica, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [12] Fang Mao-Fa, Peng Xiao-Fang, Liao Xiang-Ping, Pan Chang-Ning, Fang Jian-Shu. Fidelity of quantum teleportation of atomic-state in dissipative environment. Acta Physica Sinica, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [13] Bing He, He Rui. A new quantum teleportation protocal. Acta Physica Sinica, 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [14] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [15] Tang You-Liang, Liu Xiang, Zhang Xiao-Wei, Tang Xiao-Fang. Teleportation of the M-particle entangled state by using one entangled state. Acta Physica Sinica, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [16] Zhou Nan-Run, Zeng Gui-Hua, Gong Li-Hua, Liu San-Qiu. Quantum communication protocol for data link layer based on entanglement. Acta Physica Sinica, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [17] Xia Yun-Jie, Wang Guang-Hui, Du Shao-Jiang. Fidelity of the scheme of continunous variables quantum teleportation via minimum-correlation mixed quantum states. Acta Physica Sinica, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [18] Zhou Xiao-Qing, Wu Yun-Wen. Discussion on building the net of quantum teleportation using three-particle entangled states. Acta Physica Sinica, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [19] Zhang Qian, Li Fu-Li, Li Hong-Rong. Teleportation of a two-mode Gaussian state through double two-mode-squeezed-state quantum channels. Acta Physica Sinica, 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [20] Song Tong-Qiang. Teleportation of quantum states by means of two-mode squeezed vacuum. Acta Physica Sinica, 2004, 53(10): 3358-3362. doi: 10.7498/aps.53.3358
Metrics
  • Abstract views:  5909
  • PDF Downloads:  280
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2016
  • Accepted Date:  07 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map