搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分组交换的量子通信网络传输协议及性能分析

聂敏 王林飞 杨光 张美玲 裴昌幸

引用本文:
Citation:

基于分组交换的量子通信网络传输协议及性能分析

聂敏, 王林飞, 杨光, 张美玲, 裴昌幸

Transmission protocol and its performance analysis of quantum communication network based on packet switching

Nie Min, Wang Lin-Fei, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing
PDF
导出引用
  • 量子纠缠交换能够建立可靠的量子远程传输信道, 实现量子态的远程传输. 然而, 基于纠缠交换的量子信道要求网络高度稳定, 否则会浪费大量纠缠资源. 为节省纠缠资源, 本文根据隐形传态理论, 提出了一种基于分组交换的量子通信网络传输协议, 建立了发送量子态所需的纠缠数目与所经过的路由器数、链路错误率的定量关系, 并与纠缠交换传输协议进行了比较. 仿真结果表明, 在链路错误率为0.1% 时, 分组传输协议所使用的纠缠数目少于纠缠交换的数目, 另外, 随着错误率的升高, 分组传输协议所需的纠缠数比纠缠交换协议明显减少. 由此可见, 基于分组交换的量子通信网络传输协议在网络不稳定时, 能够节省大量纠缠资源, 适用于链路不稳定的量子通信网络.
    Quantum entanglement swapping can be used to establish reliable quantum remote transmission channel so as to realize transmission of quantum states. However, the highly stable quantum network is required in the quantum channels when using quantum entanglement swapping, otherwise it will waste a lot of entanglement resources. In order to save entanglement resources, we have to put forward a kind of quantum communication network transmission protocol based on packet switching, according to the theory of quantum teleportation. Firstly, the principle of packet switching in computer network is introduced. Next we describe the implementation process of quantum network transmission protocols which are based on entanglement swapping and packet switching. We then analyze the reliability, security and utilization rate of entanglement of the protocol we have proposed. And after that the quantitative relationship about the number of entanglement quantum states, the number of routers and link error rates are calculated. Finally, we compare these two transmission protocols. Simulation results show that the number of entanglement for these two protocols is equal without consideration of the link errors. When taking them into account, the packet switching transmission protocol can save numbers of entanglement resources obviously. In addition, with the increase of number of routers and the rise in link error rates, the quantum communication network transmission protocol based on packet switching will need less entanglement resources than that based on entanglement swapping. Therefore, when the quantum transmission network is not stable, the packet switching transmission protocol has a better transmission performance, and it can be applied to the future construction of quantum network.
      通信作者: 王林飞, 304375220@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61172071, 61201194)、陕西省自然科学基础研究计划(批准号: 2014JQ8318)和陕西省国际科技合作与交流计划项目(项目编号: 2015KW-013) 资助的课题.
      Corresponding author: Wang Lin-Fei, 304375220@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), the Natural Science Research Foundation of Shaanxi Province, China(Grant No. 2014JQ8318), and the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China(Grant No. 2015KW-013).
    [1]

    Bennett C H, Brassard G 1984 Processing of the IEEE International Conference on Computers Systems and Signal Processing Bangalore, India, December 10-12, 1984 p175

    [2]

    Ekert A 1991 Phys. Rev. Lett. 67 661

    [3]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121

    [4]

    Huttner B, Imoto N, Mor T 1995 Phys. Rev. A 51 1863

    [5]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wooters W K 1993 Phys. Rev. Lett. 70 1895

    [6]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [7]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 p376

    [8]

    Ma X S, Herbst T, Scheidl T, Wang D Q, Kropatschek S, Naylor W, Wittmann B, Mech A, Kofler J, Anisimova E, Makarov V, Jennewein T, Ursin R, Zeilinger A 2012 Nature 489 7415

    [9]

    Ding D S, Zhou Z Y, Shi B S, Guo G C 2013 Nat. Commun. 4 2527

    [10]

    Zhu C H, Pei C X, Ma H X, Yu X F 2006 J. Xidian Univ. 33 839 (in Chinese) [朱畅华, 裴昌幸, 马怀新, 于晓飞 2006 西安电子科技大学学报 33 839]

    [11]

    Zhun W, Nie M 2013 Acta Phys. Sin. 62 130304 (in Chinese) [朱伟, 聂敏 2013 62 130304]

    [12]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 62 170305]

    [13]

    Yu X T, Xu J, Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese) [余旭涛, 徐进, 张在琛 2012 61 220303]

    [14]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar 7-10, 2000 p459

    [15]

    Ray Y W L, Henry C B C, Hui C, Tharam S D, Victor O K L, Victor C M L 2008 J. Commun. Netw-s. Kor. 10 316

    [16]

    Wang J M 2014 MS Dissertation (Xi'an: Xi'an University of Electronic Science and Technology) (in Chinese) [王建民 2014 硕士学位论文 (西安: 西安电子科技大学)]

    [17]

    Wu G Y 2007 The Internet Network(Beijing: Tsinghua University press) p17-22 (in Chinese) [吴功宜 2007 计算机网络 (北京: 清华大学出版社) 第17–22页]

  • [1]

    Bennett C H, Brassard G 1984 Processing of the IEEE International Conference on Computers Systems and Signal Processing Bangalore, India, December 10-12, 1984 p175

    [2]

    Ekert A 1991 Phys. Rev. Lett. 67 661

    [3]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121

    [4]

    Huttner B, Imoto N, Mor T 1995 Phys. Rev. A 51 1863

    [5]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wooters W K 1993 Phys. Rev. Lett. 70 1895

    [6]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [7]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z, Pan J W 2010 Nat. Photonics 4 p376

    [8]

    Ma X S, Herbst T, Scheidl T, Wang D Q, Kropatschek S, Naylor W, Wittmann B, Mech A, Kofler J, Anisimova E, Makarov V, Jennewein T, Ursin R, Zeilinger A 2012 Nature 489 7415

    [9]

    Ding D S, Zhou Z Y, Shi B S, Guo G C 2013 Nat. Commun. 4 2527

    [10]

    Zhu C H, Pei C X, Ma H X, Yu X F 2006 J. Xidian Univ. 33 839 (in Chinese) [朱畅华, 裴昌幸, 马怀新, 于晓飞 2006 西安电子科技大学学报 33 839]

    [11]

    Zhun W, Nie M 2013 Acta Phys. Sin. 62 130304 (in Chinese) [朱伟, 聂敏 2013 62 130304]

    [12]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 62 170305]

    [13]

    Yu X T, Xu J, Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese) [余旭涛, 徐进, 张在琛 2012 61 220303]

    [14]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar 7-10, 2000 p459

    [15]

    Ray Y W L, Henry C B C, Hui C, Tharam S D, Victor O K L, Victor C M L 2008 J. Commun. Netw-s. Kor. 10 316

    [16]

    Wang J M 2014 MS Dissertation (Xi'an: Xi'an University of Electronic Science and Technology) (in Chinese) [王建民 2014 硕士学位论文 (西安: 西安电子科技大学)]

    [17]

    Wu G Y 2007 The Internet Network(Beijing: Tsinghua University press) p17-22 (in Chinese) [吴功宜 2007 计算机网络 (北京: 清华大学出版社) 第17–22页]

  • [1] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用.  , 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [2] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输.  , 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [3] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态.  , 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [4] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [5] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用.  , 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [6] 王林飞, 聂敏, 杨光, 张美玲, 裴昌幸. 一种基于分层的量子分组传输方案及性能分析.  , 2016, 65(13): 130302. doi: 10.7498/aps.65.130302
    [7] 李熙涵. 量子直接通信.  , 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [8] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [9] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [10] 朱伟, 聂敏. 量子信令交换机模型设计及性能分析.  , 2013, 62(13): 130304. doi: 10.7498/aps.62.130304
    [11] 乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明. 利用热平衡态超导电荷量子比特实现量子隐形传态.  , 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [12] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略.  , 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [13] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度.  , 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [14] 何锐, Bing He. 量子隐形传态的新方案.  , 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [15] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [16] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送.  , 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [17] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议.  , 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [18] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度.  , 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [19] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨.  , 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [20] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态.  , 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
计量
  • 文章访问数:  6726
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-28
  • 修回日期:  2015-06-23
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map