搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用

刘世右 郑凯敏 贾芳 胡利云 谢芳森

引用本文:
Citation:

单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用

刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森

Entanglement of one- and two-mode combination squeezed thermal states and its application in quantum teleportation

Liu Shi-You, Zheng Kai-Min, Jia Fang, Hu Li-Yun, Xie Fang-Sen
PDF
导出引用
  • 基于单-双模组合压缩真空态一定范围内能够获得压缩增强的效果,引入单-双模组合压缩热态(DSMST),讨论其纠缠性质. 利用Weyl编序算符在相似变换下的不变性,简洁方便地导出了DSMST 的纠缠度-负对数值,并给出了当热效应存在时保持纠缠的条件. 研究表明:与通常的双模压缩态相比,随着参数的增加,DSMST的纠缠度增加. 作为DSMST的应用,利用其实现相干态的量子隐形传输. 结果表明:不同于纠缠度随压缩参数增加,保真度获得改善是有条件的,该条件恰好就是一正交分量涨落出现压缩增强的参数区域. 此外,解析推导了有效隐形传输保真度(>1/2)的条件.
    In view of the fact that one- and two-mode combination squeezed vacuum states may exhibit stronger squeezing in a certain range, we introduce one- and two-mode combination squeezed thermal states (OTCSTS) and investigate the property of entanglement in detail. Using the remarkable property of Weyl ordering, i.e., the order-invariance of Weyl ordered operator under similar transformations, we conveniently derive the analytical expression of entanglement degree-logarithmic negativity, and then present the condition of keeping entanglement for these squeezed thermal states. It is found that the OTCSTS possesses higher entanglement than the usual two-mode squeezed thermal states for any non-zero squeezing parameter. As an application, the quantum teleportation for coherent state is considered by using the OTCSTS as an entangled channel. It is shown that the teleportation fidelity can only be enhanced within a certain range of parameters, which is just the same as the condition of exhibiting stronger squeezing in one quadrature. In addition, the condition of realizing effective quantum teleportation (>1/2) is obtained analytically.
    • 基金项目: 国家自然科学基金(批准号:11264018)、江西省自然科学基金(批准号:2013BAB212006)和江西省教育厅科技项目(批准号:GJJ14274)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11264018), the Natural Science Foundation of Jiangxi Province of China (Grant No. 2013BAB212006) and the Science and Technology Fundation of the Education Department of Jiangxi Province, China (Grant No. GJJ14274).
    [1]

    L J F, Ma S J 2011 Acta Phys. Sin. 60 080301 (in Chinese) [吕菁芬, 马善钧 2011 60 080301]

    [2]

    Kenfack A, Życzkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396

    [3]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)

    [4]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [5]

    Liang Y, Wu Q C, Ji X 2014 Acta Phys. Sin. 63 020301 (in Chinese) [梁艳, 吴奇成, 计新 2014 63 020301]

    [6]

    Wu Q, Zhang Z M 2013 Acta Phys. Sin. 62 174206 (in Chinese) [吴琴, 张智明 2013 62 174206]

    [7]

    Wu Q, Zhang Z M 2014 Chin. Phys. B 23 034203

    [8]

    Liu P, Feng X M, Jin R G 2014 Chin. Phys. B 23 030310

    [9]

    Fan H Y 1990 Phys. Rev. A 41 1526

    [10]

    Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147

    [11]

    Hu L Y, Fan H Y 2009 Phys. Rev. A 80 022115

    [12]

    Hu L Y, Xu X X, Guo Q, Fan H Y 2010 Opt. Commun. 283 5074

    [13]

    Fan H Y 2012 Representation and Transformation Theory in Quantum Mechanics (Hefei: University of Science and Technology of China Press) (in Chinese) [范洪义 2012 量子力学纠缠态表象与变换 (合肥: 中国科技大学出版社出版)]

    [14]

    Fan H Y, Hu L Y 2010 Investigation on Quantum Decoherence for Open Systems by Using Entangled State Representation Method (Shanghai: Shanghai Jiaotong University Press) p110 (in Chinese) [范洪义, 胡利云 2010 开放系统量子退相干的纠缠态表象论 (上海: 上海交通大学出版社出版) 第110 页]

    [15]

    Hu L Y, Jia F, Zhang Z M 2012 J. Opt. Soc. Am. B 29 1456

    [16]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [17]

    Eisert J, Plemio M B 1999 J. Mod. Opt. 46 145

    [18]

    Duan L M, Giedke G, Cirac J O, Zoller P 2000 Phys. Rev. Lett. 84 2722

    [19]

    Simon R 2000 Phys. Rev. Lett. 84 2726

    [20]

    Song T Q 2004 Acta Phys. Sin. 53 3358 (in Chinese) [宋同强 2004 53 3358]

    [21]

    Marian P, Marian T A 2006 Phys. Rev. A 74 042306

    [22]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869

    [23]

    Hu L Y, Zhang Z M 2013 J. Opt. Soc. Am. B 30 518

  • [1]

    L J F, Ma S J 2011 Acta Phys. Sin. 60 080301 (in Chinese) [吕菁芬, 马善钧 2011 60 080301]

    [2]

    Kenfack A, Życzkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396

    [3]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)

    [4]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [5]

    Liang Y, Wu Q C, Ji X 2014 Acta Phys. Sin. 63 020301 (in Chinese) [梁艳, 吴奇成, 计新 2014 63 020301]

    [6]

    Wu Q, Zhang Z M 2013 Acta Phys. Sin. 62 174206 (in Chinese) [吴琴, 张智明 2013 62 174206]

    [7]

    Wu Q, Zhang Z M 2014 Chin. Phys. B 23 034203

    [8]

    Liu P, Feng X M, Jin R G 2014 Chin. Phys. B 23 030310

    [9]

    Fan H Y 1990 Phys. Rev. A 41 1526

    [10]

    Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147

    [11]

    Hu L Y, Fan H Y 2009 Phys. Rev. A 80 022115

    [12]

    Hu L Y, Xu X X, Guo Q, Fan H Y 2010 Opt. Commun. 283 5074

    [13]

    Fan H Y 2012 Representation and Transformation Theory in Quantum Mechanics (Hefei: University of Science and Technology of China Press) (in Chinese) [范洪义 2012 量子力学纠缠态表象与变换 (合肥: 中国科技大学出版社出版)]

    [14]

    Fan H Y, Hu L Y 2010 Investigation on Quantum Decoherence for Open Systems by Using Entangled State Representation Method (Shanghai: Shanghai Jiaotong University Press) p110 (in Chinese) [范洪义, 胡利云 2010 开放系统量子退相干的纠缠态表象论 (上海: 上海交通大学出版社出版) 第110 页]

    [15]

    Hu L Y, Jia F, Zhang Z M 2012 J. Opt. Soc. Am. B 29 1456

    [16]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [17]

    Eisert J, Plemio M B 1999 J. Mod. Opt. 46 145

    [18]

    Duan L M, Giedke G, Cirac J O, Zoller P 2000 Phys. Rev. Lett. 84 2722

    [19]

    Simon R 2000 Phys. Rev. Lett. 84 2726

    [20]

    Song T Q 2004 Acta Phys. Sin. 53 3358 (in Chinese) [宋同强 2004 53 3358]

    [21]

    Marian P, Marian T A 2006 Phys. Rev. A 74 042306

    [22]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869

    [23]

    Hu L Y, Zhang Z M 2013 J. Opt. Soc. Am. B 30 518

  • [1] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态.  , 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [2] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [3] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用.  , 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [4] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型.  , 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [5] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [6] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉.  , 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [7] 何锐, Bing He. 量子隐形传态的新方案.  , 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [8] 宋军, 范洪义, 周军. 双模压缩数态光场的Wigner函数及其特性.  , 2011, 60(11): 110302. doi: 10.7498/aps.60.110302
    [9] 余海军, 杜建明, 张秀兰. 一类特殊单模压缩态的Wigner函数.  , 2011, 60(9): 090305. doi: 10.7498/aps.60.090305
    [10] 宋军, 范洪义. Schwinger Bose实现下自旋相干态Wigner函数的特性分析.  , 2010, 59(10): 6806-6813. doi: 10.7498/aps.59.6806
    [11] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数.  , 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [12] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送.  , 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [13] 夏云杰, 高德营. 纠缠相干态及其非经典特性.  , 2007, 56(7): 3703-3708. doi: 10.7498/aps.56.3703
    [14] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数.  , 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [15] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨.  , 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [16] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态.  , 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [17] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠.  , 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
    [18] 黄永畅, 刘 敏. 一般WGHZ态和它的退纠缠与概率隐形传态.  , 2005, 54(10): 4517-4523. doi: 10.7498/aps.54.4517
    [19] 杨庆怡, 孙敬文, 韦联福, 丁良恩. 增、减光子奇偶相干态的Wigner函数.  , 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
    [20] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述.  , 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
计量
  • 文章访问数:  6422
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-09
  • 修回日期:  2014-03-13
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map