Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transonic flow reconstruction by an adaptive proper orthogonal decomposition hybrid model

Luo Jia-Qi Duan Yan-Hui Xia Zhen-Hua

Citation:

Transonic flow reconstruction by an adaptive proper orthogonal decomposition hybrid model

Luo Jia-Qi, Duan Yan-Hui, Xia Zhen-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A proper orthogonal decomposition (POD) based hybrid surrogate model and the applications to transonic flow reconstructions are presented in the paper. In the implementations, the radial basis function (RBF) model response instead of the least-square linear regression is employed in order to improve the coefficients of POD basis modes; moreover, an adaptive sampling strategy with both the model response error and sample independence taken into account is studied to reduce the sample number, while maintaining sufficient response accuracy. Firstly, the POD-RBF surrogate model is studied and compared with the least-square-based POD through pressure reconstruction studies on the twodimensional blade surface. The results demonstrate that the non-linear model response method significantly improves the coefficients of the basis modes and thus the averaged description error. Meanwhile, the beneficial gains on the convergence performance of the response error versus the number of basis modes are obtained. Then by comparing with the uniform sampling and the resampling strategy with taking only the response error into account, the adaptive sampling method proposed in the paper obtains the best performance on reducing the averaged description error. Finally, the flow characteristics of the flow fields on the suction surface, at the blade tip, in the blade passage of the sampled three-dimensional transonic compressor rotor blades with different spanwise sweeps based on the baseline blade, NASA Rotor 67 are illustrated through the flow basis modes. Compared with the suction flow, the flow at the blade tip contains more intensive flow characteristics including shock, tip-leakage flow and shock-leakage interaction, resulting in a higher averaged description error. Besides, the missed flow fields in the passages of the test blades are reconstructed from the flow basis modes by using the adaptive POD-RBF hybrid model and the corresponding aerodynamic parameters are then predicted. The spanwise distributions of the circumferentially averaged aerodynamic parameters at the blade outlet reconstructed from POD-RBF model are consistent well with the numerical solutions. The results demonstrate that the adaptive POD-RBF hybrid surrogate model is effective and accurate enough for reconstructing the transonic flow. In order to further evaluate the response performance of the adaptive POD-RBF model, statistic analysis is carried out for a group of hybrid models with different sampling strategies and different numbers of samples. Generally, although the number of adaptive samples is much less, the mean value and standard deviation of the adaptive model are close enough to those of the static model with sufficient uniform samples. Besides, the standard deviations of a lot of aerodynamic parameters of interest exhibit significant peaks near the blade tip, further demonstrating that the flow at the blade tip is more intensive in the three-dimensional transonic rotor blade passage.
      Corresponding author: Luo Jia-Qi, jiaqil@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51206003, 51376009) and the China Postdoctoral Science Foundation (Grant Nos. 2012M510267, 2013T60035).
    [1]

    Xie G F, He X H, Tong J J, Zheng Y H 2007 Acta Phys. Sin. 56 3193 (in Chinese) [谢国锋, 何旭洪, 童节娟, 郑艳华 2007 56 3193]

    [2]

    Luo J Q, Liu F 2013 Acta Phys. Sin. 62 190201 (in Chinese) [罗佳奇, 刘锋 2013 62 190201]

    [3]

    Jordan M I, Jacobs R A 1994 Neural Comput. 6 181

    [4]

    Couplet M, Basdevant C, Sagut P 2005 J. Comput. Phys. 207 192

    [5]

    Gao Q, Yi S H, Jiang Z F, He L, Xie W K 2013 Chin. Phys. B 22 014202

    [6]

    Wang W, Guan X L, Jiang N 2014 Chin. Phys. B 23 104703

    [7]

    Sirovich L, Kirby M 1987 J. Opt. Soc. Am. A 4 519

    [8]

    Dowell E, Hall K, Thomas J, Florea R, Heeg J 1999 AIAA Paper 1999 1261

    [9]

    LeGresley P A, Alonso J J 2001 AIAA Paper 2001 0926

    [10]

    Wilcox K, Peraire J 2002 AIAA J. 40 2323

    [11]

    Bui-Thanh T, Damodaran M, Willcox K 2004 AIAA J. 42 1063

    [12]

    Duan Y H, Cai J S, Li Y Z 2012 AIAA J. 50 968

    [13]

    Kato H, Funazaki K I 2014 ASME Paper 2014 27229

    [14]

    Luo J, Duan Y, Tang X, Liu F 2015 ASME Paper 2015 42876

    [15]

    Krige D G 1951 J. Chem. Metal. Min. Soc. S. AFR. 52 119

    [16]

    Ostrowski Z, Bialecki R A, Kassab A J 2008 Inverse Probl. Sci. En. 16 39

    [17]

    Rogers C A, Kassab A J, Divo E A, Ostrowski Z, Bialecki R A 2012 Inverse Probl. Sci. En. 20 749

    [18]

    Qiu Y S, Bai J Q, Hua J 2013 Acta Aeronau. Astronau. Sin. 34 1249 (in Chinese) [邱亚松, 白俊强, 华俊 2013 航空学报 34 1249]

    [19]

    Braconnier T, Ferrier M, Jouhaud J C, Montagnac M, Sagaut P 2011 Comput. Fluids 40 195

    [20]

    Gao S G, Dong H R, Sun X B, Ning B 2015 Chin. Phys. B 24 010501

    [21]

    McKay M D, Beckman R J, Conover W J 2000 Technometrics 42 55

    [22]

    Wang G G 2003 J. Mech. Design 125 210

    [23]

    Thomson Q, Martins J R R A 2011 Eng. Optimiz. 43 615

    [24]

    Sirovich L, Kirby M 1987 Q. Appl. Math. 45 561

    [25]

    Finkel R, Bentley J L 1974 Acta Inform. 4 1

    [26]

    Strazisar A J, Wood J R, Hathaway M D, Suder K L 1989 NASA TP 1989 2879

    [27]

    Denton J D, Xu L 2002 ASME Paper 2002 30327

    [28]

    Luo J, Zhou C, Liu F 2014 J. Turbomach. 136 051005

  • [1]

    Xie G F, He X H, Tong J J, Zheng Y H 2007 Acta Phys. Sin. 56 3193 (in Chinese) [谢国锋, 何旭洪, 童节娟, 郑艳华 2007 56 3193]

    [2]

    Luo J Q, Liu F 2013 Acta Phys. Sin. 62 190201 (in Chinese) [罗佳奇, 刘锋 2013 62 190201]

    [3]

    Jordan M I, Jacobs R A 1994 Neural Comput. 6 181

    [4]

    Couplet M, Basdevant C, Sagut P 2005 J. Comput. Phys. 207 192

    [5]

    Gao Q, Yi S H, Jiang Z F, He L, Xie W K 2013 Chin. Phys. B 22 014202

    [6]

    Wang W, Guan X L, Jiang N 2014 Chin. Phys. B 23 104703

    [7]

    Sirovich L, Kirby M 1987 J. Opt. Soc. Am. A 4 519

    [8]

    Dowell E, Hall K, Thomas J, Florea R, Heeg J 1999 AIAA Paper 1999 1261

    [9]

    LeGresley P A, Alonso J J 2001 AIAA Paper 2001 0926

    [10]

    Wilcox K, Peraire J 2002 AIAA J. 40 2323

    [11]

    Bui-Thanh T, Damodaran M, Willcox K 2004 AIAA J. 42 1063

    [12]

    Duan Y H, Cai J S, Li Y Z 2012 AIAA J. 50 968

    [13]

    Kato H, Funazaki K I 2014 ASME Paper 2014 27229

    [14]

    Luo J, Duan Y, Tang X, Liu F 2015 ASME Paper 2015 42876

    [15]

    Krige D G 1951 J. Chem. Metal. Min. Soc. S. AFR. 52 119

    [16]

    Ostrowski Z, Bialecki R A, Kassab A J 2008 Inverse Probl. Sci. En. 16 39

    [17]

    Rogers C A, Kassab A J, Divo E A, Ostrowski Z, Bialecki R A 2012 Inverse Probl. Sci. En. 20 749

    [18]

    Qiu Y S, Bai J Q, Hua J 2013 Acta Aeronau. Astronau. Sin. 34 1249 (in Chinese) [邱亚松, 白俊强, 华俊 2013 航空学报 34 1249]

    [19]

    Braconnier T, Ferrier M, Jouhaud J C, Montagnac M, Sagaut P 2011 Comput. Fluids 40 195

    [20]

    Gao S G, Dong H R, Sun X B, Ning B 2015 Chin. Phys. B 24 010501

    [21]

    McKay M D, Beckman R J, Conover W J 2000 Technometrics 42 55

    [22]

    Wang G G 2003 J. Mech. Design 125 210

    [23]

    Thomson Q, Martins J R R A 2011 Eng. Optimiz. 43 615

    [24]

    Sirovich L, Kirby M 1987 Q. Appl. Math. 45 561

    [25]

    Finkel R, Bentley J L 1974 Acta Inform. 4 1

    [26]

    Strazisar A J, Wood J R, Hathaway M D, Suder K L 1989 NASA TP 1989 2879

    [27]

    Denton J D, Xu L 2002 ASME Paper 2002 30327

    [28]

    Luo J, Zhou C, Liu F 2014 J. Turbomach. 136 051005

  • [1] Zhan Qing-Liang, Ge Yao-Jun, Bai Chun-Jin. Flow feature extraction models based on deep learning. Acta Physica Sinica, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [2] Xu Zi-Fei, Miao Wei-Pao, Li Chun, Jin Jiang-Tao, Li Shu-Jun. Nonlinear feature extraction and chaos analysis of flow field. Acta Physica Sinica, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [3] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [4] Ma Ping, Shi An-Hua, Yang Yi-Jian, Yu Zhe-Feng, Liang Shi-Chang, Huang Jie. Experiment on similarity between wake flow field and electromagnetic scattering characteristic of the hypersonic model. Acta Physica Sinica, 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [5] Duan Yan-Hui, Wu Wen-Hua, Fan Zhao-Lin, Luo Jia-Qi. Proper orthogonal decomposition-based data mining of aerodynamic shape for design optimization. Acta Physica Sinica, 2017, 66(22): 220203. doi: 10.7498/aps.66.220203
    [6] Wang Hui, Sha Wei E. I., Huang Zhi-Xiang, Wu Xian-Liang, Shen Jing. A novel eigenvalue method for calculating the band structure of lossy and dispersive photonic crystals. Acta Physica Sinica, 2014, 63(18): 184210. doi: 10.7498/aps.63.184210
    [7] Wei Wei, Lu Lu-Yi, Gu Zhao-Lin. Modeling and simulation of electrification of wind-blown-sand two-phase flow. Acta Physica Sinica, 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [8] Zhang Han, Guan Yu-Ping. Relationship between the South China Sea summer monsoon and the first-landfall tropical cyclone over mainland of China. Acta Physica Sinica, 2012, 61(12): 129201. doi: 10.7498/aps.61.129201
    [9] Hu Hui-Yong, Shu Yu, Zhang He-Ming, Song Jian-Jun, Xuan Rong-Xi, Qing Shan-Shan, Qu Jiang-Tao. Collector junction depletion-layer width model of SiGeheterojunction bipolar transistor with intrinsic SiGe layer. Acta Physica Sinica, 2011, 60(1): 017303. doi: 10.7498/aps.60.017303
    [10] Wang Guan-Yu, Ma Jian-Li, Zhang He-Ming, Wang Xiao-Yan, Wang Bin. Model of intrinsic carrier concentrationof [110]/(001)-uniaxial strained Si. Acta Physica Sinica, 2011, 60(7): 077105. doi: 10.7498/aps.60.077105
    [11] Li Li, Zhang Xin-Lu, Cui Jin-Hui, Chen Li-Xue. Characteristics of intrinsic optical bistability and parameter optimization in Tm3+/Yb3+ codoped laser crystal. Acta Physica Sinica, 2010, 59(2): 1052-1062. doi: 10.7498/aps.59.1052
    [12] Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Dai Xian-Ying, Xuan Rong-Xi. Model of intrinsic carrier concentration of strained Si/(001)Si1-xGex. Acta Physica Sinica, 2010, 59(3): 2064-2067. doi: 10.7498/aps.59.2064
    [13] Cao Jie, Gao Shou-Ting, Zhou Yu-Shu. Improved Q vector analyses from the perspective of field separation and its application in a torrential rain event. Acta Physica Sinica, 2008, 57(4): 2600-2606. doi: 10.7498/aps.57.2600
    [14] Zhou Tie-Ge, Song Feng-Bin, Zuo Tao, Gu Jing, Xia Hou-Hai, Hu Ya-Ting, Zhao Xin-Jie, Fang Lan, Yan Shao-Lin. The model of capacitively coupled intrinsic Josephson junction array and its chaotic behavior. Acta Physica Sinica, 2007, 56(11): 6307-6314. doi: 10.7498/aps.56.6307
    [15] Wang Ji-Suo, Feng Jian, Liu Tang-Kun, Zhan Ming-Sheng. . Acta Physica Sinica, 2002, 51(9): 1983-1988. doi: 10.7498/aps.51.1983
    [16] FENG SHI-DE, ZHANG QIONG, REN RONG-CAI. SIMULATION OF A FLOW FIELD WITH NONUNIFORM TEMPERATURE BY USING LATTICE BOLTZMANN EQUATION MODEL. Acta Physica Sinica, 2001, 50(7): 1207-1212. doi: 10.7498/aps.50.1207
    [17] LI FU-LI, CHAI JIN-LIN, ZHANG ZHI-MING. A NEW METHOD FOR CONSTRUCTING ORTHONORMAL EIGENVECTORS OF HIGH ORDER POWER OF PHOTON ANNIHILATION OPERATOR. Acta Physica Sinica, 1993, 42(7): 1058-1064. doi: 10.7498/aps.42.1058
    [18] SHI WEI-CHUN, CHANG JIAN-BIN, HAN SHI-JIE. A METHOD FOR CONSTRUCTING EVERY ORTHONORMAL EIGENSTATES SYSTEM OF αN. Acta Physica Sinica, 1993, 42(3): 400-406. doi: 10.7498/aps.42.400
    [19] Li Fu-li;Cai Jin-lin;Zhang Zhi-ming. A NEW METHOD FOR CONSTRUCTING ORTHONORMAL EIGENVECTORS OF HIGH ORDER POWER OF PHOTON ANNIHILATION OPERATOR. Acta Physica Sinica, 1991, 40(7): 1058-1064. doi: 10.7498/aps.40.1058
    [20] ZHOU YU-KUI, YUN GUO-HONG. A STUDY ON THE EIGENSTATES OF QUANTUM NONLINEAR SCHR?DINGER MODEL WITH GENERAL SUPERMATRICES. Acta Physica Sinica, 1989, 38(4): 648-652. doi: 10.7498/aps.38.648
Metrics
  • Abstract views:  6313
  • PDF Downloads:  230
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2015
  • Accepted Date:  26 February 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map