Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy

Xiao Jia-Xing Lu Jun Zhu Li-Jun Zhao Jian-Hua

Citation:

Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy

Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Materials with large perpendicular magnetic anisotropies (PMAs) have drawn great attention because of their potential applications in advanced spintronic devices such as spin-transfer-torque magnetic random access memory (STT-MRAM) and ultrahigh-density perpendicular magnetic recording. To date, a large variety of PMA materials have been investigated, such as L10-ordered FePt, CoPt granular films, Co/(Pt,Pd,Ni) multilayers, ultra-thin CoFeB alloys and perpendicularly magnetized Co2FeAl films. Among the various kinds of materials with PMA, MnGa film with L10-structure has received the most attention because it has large PMA (Ku~107 erg/cm3), ultralow Gilbert damping constant (0.008) and theoretically predicted high spin polarization (more than 70%). All these properties make L10-ordered MnGa a good candidate for spintronic devices such as STT-MRAM and spin-torque oscillators. Meanwhile, from the viewpoint of STT related spintronic device, it is necessary to fabricate ultrathin perpendicularly magnetized L10-MnxGa films to lower the critical current for magnetization reversal. However, up to now, in the main researches the ultrathin L10-MnxGa films have been grown on MgO substrates, which makes it difficult to integrate the MnGa-based magnetic tunnel junctions into the semiconductor manufacturing process.In this work, ultrathin L10-Mn1.67Ga films with different thickness values (1-5 nm) are grown on traditional GaAa (001) substrates by a molecule-beam epitaxy system. During the deposition, in situ streaky surface reconstruction patterns are observed from reflection high-energy electron diffraction, which implies high crystalline quality of the L10-Mn1.67Ga film. Only MnGa superlattice (001) and MnGa fundamental (002) peaks can be observed in the X-ray diffraction patterns in a range from 20 to 70, which means that the L10-Mn1.67Ga film is a good single-crystalline with c-axis along the normal direction. The magnetic properties of these films are measured by superconductor quantum interference device magnetometer in a field range of 5 T. The perpendicular M-H curves are almost square, while the in-plane curves are nearly hysteresis-free, each with a remnant magnetization (Mr) of around zero, which clearly evidences the PMA of the ultrathin L10-Mn1.67Ga film. Moreover, as the thickness of L10-Mn1.67Ga film decreases from 5 nm to 1 nm, the ratio of Mr/Ms also decreases from 1 to 0.72, which indicates that the PMA loses as thickness decreases. We also estimate the perpendicular anisotropy constant (Ku) from the relation Ku=Keff+2 Ms2, and the maximum Ku of 14.7 Merg/cm3 is obtained for the 5 nm MnGa film. Although the Ku decreases with thickness decreasing, a Ku value of 8.58 Merg/cm3 is observed in a 2 nm thick film. The obtained results are important for developing the L10-MnGa-based spin-transfer torque Gbit class magnetic random access memory.
      Corresponding author: Lu Jun, lujun@semi.ac.cn;jhzhao@red.semi.ac.cn ; Zhao Jian-Hua, lujun@semi.ac.cn;jhzhao@red.semi.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032904), the National Basic Research Program of China (Grant No. 2015CB921500) and the Key Program of the National Natural Science Foundation of China (Grant Nos. 61334006, 11304307).
    [1]

    Nie S H, Zhu L J, Pan D, Lu J, Zhao J H 2013 Acta Phys. Sin. 62 178103 (in Chinese) [聂帅华, 朱礼军, 潘东, 鲁军, 赵建华 2013 62 178103]

    [2]

    Wang H, Yang F J, Xue S X, Cao X, Wang J A, Gu H S, Zhao Z Q 2005 Acta Phys. Sin. 54 1415 (in Chinese) [王浩, 杨傅军, 薛双喜, 曹歆, 王君安, 顾豪爽, 赵子强 2005 54 1415]

    [3]

    Mizukami S, Kubota T, Wu F, Zhang X, Miyazaki T, Naganuma H, Oogane M, Sakuma A, Ando Y 2012 Phys. Rev. B 85 014416

    [4]

    Zhu Y, Cai J W 2005 Acta Phys. Sin. 54 393 (in Chinese) [竺云, 蔡建旺 2005 54 393]

    [5]

    Balke B, Fecher G H, Winterlik J, Felser C 2007 Appl. Phys. Lett. 90 152504

    [6]

    Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H, Zheng H Z 2012 Adv. Mater. 24 4547

    [7]

    Wu F, Mizukami S, Watanabe D, Naganuma H, Oogane M, Ando Y, Miyazaki T 2009 Appl. Phys. Lett. 94 122503

    [8]

    Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y, Miyazaki T 2011 Phys. Rev. Lett. 106 117201

    [9]

    Winterlik J, Balke B, Fecher G H, Felser C, Alves M C M, Bernardi F, Morais J 2008 Phys. Rev. B 77 054406

    [10]

    Bai Z Q, Cai Y Q, Shen L, Yang M, Ko V, Han G C, Feng Y P 2012 Appl. Phys. Lett. 100 022408

    [11]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [12]

    Hyun Cheol Koo J H K, Eom J, Chang J, Han S H, Johnson M 2009 Science 325 1515

    [13]

    Jrg Wunderlich B G P, Irvine A C, Zarbo L P, Rozkotov E, Nemec P, Novk V, Sinova J, Jungwirth T 2010 Science 330 1801

    [14]

    Kohda M, Kita T, Ohno Y, Matsukura F, Ohno H 2006 Appl. Phys. Lett. 89 012103

    [15]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790

    [16]

    Lou X H, Ademann C, Crooker S A, Garlid E S, Zhang J J, Madhukar Reddy K S, Flexner S D, Palmstrm C J, Crowell P A 2007 Nature Phys. 3 197

    [17]

    Ma Q L, Mizukami S, Kubota T, Zhang X M, Ando Y, Miyazaki T 2014 Phys. Rev. Lett. 112 157202

    [18]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210

    [19]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nature Mater. 9 721

    [20]

    Mancoff F B, Dunn J H, Clemens B M, White R L 2000 Appl. Phys. Lett. 77 1879

    [21]

    Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nature Mater. 6 441

    [22]

    Sun J Z 2000 Phys. Rev. B 62 570

    [23]

    Krishnan K M 1992 Appl. Phys. Lett. 61 2365

    [24]

    Wu F, Mizukami S, Watanabe D, Sajitha E P, Naganuma H, Oogane M, Ando Y, Miyazaki T 2010 IEEE Trans. Magn. 46 1863

    [25]

    Khler A, Knez I, Ebke D, Felser C, Parkin S S P 2013 Appl. Phys. Lett. 103 162406

    [26]

    Zheng Y H, Han G C, Lu H, Teo K L 2014 J. Appl. Phys. 115 043902

    [27]

    Suzuki K Z, Ranjbar R, Sugihara A, Miyazaki T, Mizukami S 2016 Jpn. J. Appl. Phys. 55 010305

    [28]

    Tanaka M, Harbison J P, Sands T, Philips B, Cheeks T L, de Boeck J, Florez L T, Keramidas V G 1993 Appl. Phys. Lett. 63 696

    [29]

    Huh Y, Kharel P, Shah V R, Li X Z, Skomski R, Sellmyer D J 2013 J. Appl. Phys. 114 013906

  • [1]

    Nie S H, Zhu L J, Pan D, Lu J, Zhao J H 2013 Acta Phys. Sin. 62 178103 (in Chinese) [聂帅华, 朱礼军, 潘东, 鲁军, 赵建华 2013 62 178103]

    [2]

    Wang H, Yang F J, Xue S X, Cao X, Wang J A, Gu H S, Zhao Z Q 2005 Acta Phys. Sin. 54 1415 (in Chinese) [王浩, 杨傅军, 薛双喜, 曹歆, 王君安, 顾豪爽, 赵子强 2005 54 1415]

    [3]

    Mizukami S, Kubota T, Wu F, Zhang X, Miyazaki T, Naganuma H, Oogane M, Sakuma A, Ando Y 2012 Phys. Rev. B 85 014416

    [4]

    Zhu Y, Cai J W 2005 Acta Phys. Sin. 54 393 (in Chinese) [竺云, 蔡建旺 2005 54 393]

    [5]

    Balke B, Fecher G H, Winterlik J, Felser C 2007 Appl. Phys. Lett. 90 152504

    [6]

    Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H, Zheng H Z 2012 Adv. Mater. 24 4547

    [7]

    Wu F, Mizukami S, Watanabe D, Naganuma H, Oogane M, Ando Y, Miyazaki T 2009 Appl. Phys. Lett. 94 122503

    [8]

    Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y, Miyazaki T 2011 Phys. Rev. Lett. 106 117201

    [9]

    Winterlik J, Balke B, Fecher G H, Felser C, Alves M C M, Bernardi F, Morais J 2008 Phys. Rev. B 77 054406

    [10]

    Bai Z Q, Cai Y Q, Shen L, Yang M, Ko V, Han G C, Feng Y P 2012 Appl. Phys. Lett. 100 022408

    [11]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [12]

    Hyun Cheol Koo J H K, Eom J, Chang J, Han S H, Johnson M 2009 Science 325 1515

    [13]

    Jrg Wunderlich B G P, Irvine A C, Zarbo L P, Rozkotov E, Nemec P, Novk V, Sinova J, Jungwirth T 2010 Science 330 1801

    [14]

    Kohda M, Kita T, Ohno Y, Matsukura F, Ohno H 2006 Appl. Phys. Lett. 89 012103

    [15]

    Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790

    [16]

    Lou X H, Ademann C, Crooker S A, Garlid E S, Zhang J J, Madhukar Reddy K S, Flexner S D, Palmstrm C J, Crowell P A 2007 Nature Phys. 3 197

    [17]

    Ma Q L, Mizukami S, Kubota T, Zhang X M, Ando Y, Miyazaki T 2014 Phys. Rev. Lett. 112 157202

    [18]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nature Mater. 5 210

    [19]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nature Mater. 9 721

    [20]

    Mancoff F B, Dunn J H, Clemens B M, White R L 2000 Appl. Phys. Lett. 77 1879

    [21]

    Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nature Mater. 6 441

    [22]

    Sun J Z 2000 Phys. Rev. B 62 570

    [23]

    Krishnan K M 1992 Appl. Phys. Lett. 61 2365

    [24]

    Wu F, Mizukami S, Watanabe D, Sajitha E P, Naganuma H, Oogane M, Ando Y, Miyazaki T 2010 IEEE Trans. Magn. 46 1863

    [25]

    Khler A, Knez I, Ebke D, Felser C, Parkin S S P 2013 Appl. Phys. Lett. 103 162406

    [26]

    Zheng Y H, Han G C, Lu H, Teo K L 2014 J. Appl. Phys. 115 043902

    [27]

    Suzuki K Z, Ranjbar R, Sugihara A, Miyazaki T, Mizukami S 2016 Jpn. J. Appl. Phys. 55 010305

    [28]

    Tanaka M, Harbison J P, Sands T, Philips B, Cheeks T L, de Boeck J, Florez L T, Keramidas V G 1993 Appl. Phys. Lett. 63 696

    [29]

    Huh Y, Kharel P, Shah V R, Li X Z, Skomski R, Sellmyer D J 2013 J. Appl. Phys. 114 013906

  • [1] Wang Wei, Liu Wei, Xie Sen, Ge Hao-Ran, Ouyang Yu-Jie, Zhang Cheng, Hua Fu-Qiang, Zhang Min, Tang Xin-Feng. epitaxial growth, intrinsic point defects and electronic transport optimization of MnTe films. Acta Physica Sinica, 2022, 71(13): 137102. doi: 10.7498/aps.71.20212350
    [2] Meng Jing, Feng Xin-Wei, Shao Qing-Rong, Zhao Jia-Peng, Xie Ya-Li, He Wei, Zhan Qing-Feng. Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias. Acta Physica Sinica, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [3] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [4] Jiang Xing-Dong, Guan Xing-Yin, Huang Juan-Juan, Fan Xiao-Long, Xue De-Sheng. Recovering in-plane six-fold magnetic symmetry of epitaxial Fe films by N+ implantation. Acta Physica Sinica, 2019, 68(12): 126102. doi: 10.7498/aps.68.20190131
    [5] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [6] Zhang Ma-Lin, Ge Jian-Feng, Duan Ming-Chao, Yao Gang, Liu Zhi-Long, Guan Dan-Dan, Li Yao-Yi, Qian Dong, Liu Can-Hua, Jia Jin-Feng. Molecular beam epitaxy growth of multilayer FeSe thin film on SrTiO3 (001). Acta Physica Sinica, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [7] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [8] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [9] Nie Shuai-Hua, Zhu Li-Jun, Pan Dong, Lu Jun, Zhao Jian-Hua. Structural characterization and magnetic properties of perpendicularly magnetized MnAl films grown by molecular-beam epitaxy. Acta Physica Sinica, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [10] Chen Jia-Luo, Di Guo-Qing. Influence of magnetic anisotropy thermoelectric effect on spin-dependent devices. Acta Physica Sinica, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [11] Ding Zhao, Wei Jun, Yang Zai-Rong, Luo Zi-Jiang, He Ye-Quan, Zhou Xun, He Hao, Deng Chao-Yong. Study on temperature calibration and surface phase transition of GaAs crystal substrate in MBE growth by RHEED real-time monitoring. Acta Physica Sinica, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [12] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [13] Zhang Yan-Hui, Chen Ping-Ping, Li Tian-Xin, Yin Hao. InNSb single crystal films prepared on GaAs (001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [14] Cui Xiu-Zhi, Zhang Tian-Chong, Mei Zeng-Xia, Liu Zhang-Long, Liu Yao-Ping, Guo Yang, Su Xi-Yu, Xue Qi-Kun, Du Xiao-Long. Influence of wet etching on the morphologies of Si patterned substrates and ZnO epilayers. Acta Physica Sinica, 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [15] Li Tian-Fu, Chen Dong-Feng, Wang Hong-Li, Sun Kai, Liu Yun-Tao. Magnetic properties of ultrathin (4?)Fe film studied by polarized neutron reflectometry. Acta Physica Sinica, 2009, 58(11): 7993-7997. doi: 10.7498/aps.58.7993
    [16] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [17] Guo Yu-Xian, Wang Jie, Xu Peng-Shou, Li Hong-Hong, Cai Jian-Wang. Element-specific in-plane magnetic anisotropy in Co0.9Fe0.1 films. Acta Physica Sinica, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [18] Li Rui-Peng, Wang Jie, Li Hong-Hong, Guo Yu-Xian, Wang Feng, Hu Zhi-Wei. In-plane anisotropy of iron single-crystal thin film using x-ray magnetic circular dichroism. Acta Physica Sinica, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [19] Ye Jian-Song, Hu Xiao-Jun. . Acta Physica Sinica, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
    [20] Tan Zhen-Yu, Xia Yue-Yuan. . Acta Physica Sinica, 2002, 51(7): 1506-1511. doi: 10.7498/aps.51.1506
Metrics
  • Abstract views:  6260
  • PDF Downloads:  183
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2016
  • Accepted Date:  01 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map