Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomic scale piezoelectricity and giant piezoelectric resistance effect in gallium nitride tunnel junctions under compressive strain

Zhang Geng-Hong Zhu Jia Jiang Ge-Lei Wang Biao Zheng Yue

Citation:

Atomic scale piezoelectricity and giant piezoelectric resistance effect in gallium nitride tunnel junctions under compressive strain

Zhang Geng-Hong, Zhu Jia, Jiang Ge-Lei, Wang Biao, Zheng Yue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is an urgent and significant issue to investigate the influence factors of functional devices and then improve, modify or control their performances, which has important significance for the practical application and electronic industry. Based on first principle and quantum transport calculations, the effects of compressive strain on the current transport and relative electrical properties (such as the electrostatic potential energy, built-in electric field, charge density and polarization, etc.) in gallium nitride (GaN) tunnel junctions are investigated. It is found that there are potential energy drop, built-in electric field and spontaneous polarization in the GaN barrier of the tunnel junction due to the non-centrosymmetric structure of GaN. Furthermore, results also show that all these electrical properties can be adjusted by compressive strain. With the increase of the applied in-plane compressive strain, the piezocharge density in the GaN barrier of the tunnel junction gradually increases. Accordingly, the potential energy drop throughout the GaN barrier gradually flattens and the built-in electric field decreases. Meanwhile, the average polarization of the barrier is weakened and even reversed. These strain-dependent evolutions of the electric properties also provide an atomic level insight into the microscopic piezoelectricity of the GaN tunnel junction. In addition, it is inspiring to see that the current transport as well as the tunneling resistance of the GaN tunnel junction can be well tuned by the compressive strain. When the applied compressive strain decreases, the tunneling current of the junction increases and the tunneling resistance decreases. This strain control ability on the tunnel junctions current and resistance becomes more powerful at large bias voltages. At a bias voltage of -1.0 V, the tunneling resistance can increase up to 4 times by a -5% compressive strain, which also reveals the intrinsic giant piezoelectric resistance effect in the GaN tunnel junction. This study exhibits the potential applications of GaN tunnel junctions in tunable electronic devices and also implies the promising prospect of strain engineering in the field of exploiting tunable devices.
      Corresponding author: Wang Biao, wangbiao@mail.sysu.edu.cn;zhengy35@mail.sysu.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2014M552267) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110171110022).
    [1]

    Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237

    [2]

    Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653

    [3]

    Liou J K, Chen C C, Chou P C, Tsai Z J, Chang Y C, Liu W C 2014 IEEE J. Quantum Elect. 50 973

    [4]

    Zhao L X, Yu Z G, Sun B, Zhu S C, An P B, Yang C, Liu L, Wang J X, Li J M 2015 Chin. Phys. B 24 068506

    [5]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P 2004 IEEE Elect. Device Lett. 25 117

    [6]

    Higashiwaki M, Mimura T, Matsui T 2008 Appl. Phys. Express 1 021103

    [7]

    Zheng Y, Woo C H 2009 Nanotechnology 20 075401

    [8]

    Luo X, Wang B, Zheng Y 2011 ACS Nano 5 1649

    [9]

    Zhang G H, Luo X, Zheng Y, Wang B 2012 Phys. Chem. Chem. Phys. 14 7051

    [10]

    Yang Y, Qi J J, Gu Y S, Wang X Q, Zhang Y 2009 Phys. Status Solidi RRL 3 269

    [11]

    Wang Z L 2007 Adv. Mater. 19 889

    [12]

    Zhou J, Fei P, Gu Y D, Mai W J, Gao Y F, Yang R S, Bao G, Wang Z L 2008 Nano Lett. 8 3973

    [13]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004

    [14]

    Feng X L, Zhang Y, Wang Z L 2013 Sci. China Tech. Sci. 56 2615

    [15]

    Liu Y, Zhang Y, Yang Q, Niu S M, Wang Z L 2015 Nano Energy 14 257

    [16]

    Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 60 117103]

    [17]

    Yang Z Q, Xu Z Z 1997 Acta Phys. Sin. (Overseas Edition) 6 606

    [18]

    Hao G D, Chen Y H, Fan Y M, Huang X H, Wang H B 2010 Chin. Phys. B 19 117104

    [19]

    Agrawal R, Espinosa H D 2011 Nano Lett. 11 786

    [20]

    Zhang J, Wang C Y, Chowdhury R, Adhikari S 2013 Scripta Mater. 68 627

    [21]

    Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532

    [22]

    Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403

    [23]

    Yu R M, Wang X F, Peng W B, Wu W Z, Ding Y, Li S T, Wang Z L 2015 ACS Nano 9 9822

    [24]

    Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578

    [25]

    Wang C H, Liao W S, Ku N J, Li Y C, Chen Y C, Tu L W, Liu C P 2014 Small 10 4718

    [26]

    Jiao Q Q, Chen Z Z, Ma J, Wang S Y, Li Y, Jiang S, Feng Y L, Li J Z, Chen Y F, Yu T J, Wang S F, Zhang G Y, Tian P F, Xie E Y, Gong Z, Gu E D, Dawson M D 2015 Opt. Express 23 237856

    [27]

    Hertog M D, Songmuang R, Gonzalez-Posada F, Monroy E 2013 Jpn. J. Appl. Phys. 52 11NG01

    [28]

    Kamiya T, Tajima K, Nomura K, Yanagi H, Hosono H 2008 Phys. Status Solidi A 205 1929

    [29]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [34]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [35]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [36]

    Junquera J, Cohen M H, Rabe K M 2007 J. Phys.: Condens. Matter 19 213203

    [37]

    Zhang G H, Zheng Y, Wang B 2013 J. Appl. Lett. 114 044111

    [38]

    Liu W, Zhang A H, Zhang Y, Wang Z L 2015 Nano Energy 14 355

    [39]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355

    [40]

    Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp102-112

  • [1]

    Strite S, Morko H 1992 J. Vac. Sci. Technol. B 10 1237

    [2]

    Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653

    [3]

    Liou J K, Chen C C, Chou P C, Tsai Z J, Chang Y C, Liu W C 2014 IEEE J. Quantum Elect. 50 973

    [4]

    Zhao L X, Yu Z G, Sun B, Zhu S C, An P B, Yang C, Liu L, Wang J X, Li J M 2015 Chin. Phys. B 24 068506

    [5]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P 2004 IEEE Elect. Device Lett. 25 117

    [6]

    Higashiwaki M, Mimura T, Matsui T 2008 Appl. Phys. Express 1 021103

    [7]

    Zheng Y, Woo C H 2009 Nanotechnology 20 075401

    [8]

    Luo X, Wang B, Zheng Y 2011 ACS Nano 5 1649

    [9]

    Zhang G H, Luo X, Zheng Y, Wang B 2012 Phys. Chem. Chem. Phys. 14 7051

    [10]

    Yang Y, Qi J J, Gu Y S, Wang X Q, Zhang Y 2009 Phys. Status Solidi RRL 3 269

    [11]

    Wang Z L 2007 Adv. Mater. 19 889

    [12]

    Zhou J, Fei P, Gu Y D, Mai W J, Gao Y F, Yang R S, Bao G, Wang Z L 2008 Nano Lett. 8 3973

    [13]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004

    [14]

    Feng X L, Zhang Y, Wang Z L 2013 Sci. China Tech. Sci. 56 2615

    [15]

    Liu Y, Zhang Y, Yang Q, Niu S M, Wang Z L 2015 Nano Energy 14 257

    [16]

    Jiao Z Y, Yang J F, Zhang X Z, Ma S H, Guo Y L 2011 Acta Phys. Sin. 60 117103 (in Chinese) [焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮 2011 60 117103]

    [17]

    Yang Z Q, Xu Z Z 1997 Acta Phys. Sin. (Overseas Edition) 6 606

    [18]

    Hao G D, Chen Y H, Fan Y M, Huang X H, Wang H B 2010 Chin. Phys. B 19 117104

    [19]

    Agrawal R, Espinosa H D 2011 Nano Lett. 11 786

    [20]

    Zhang J, Wang C Y, Chowdhury R, Adhikari S 2013 Scripta Mater. 68 627

    [21]

    Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532

    [22]

    Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403

    [23]

    Yu R M, Wang X F, Peng W B, Wu W Z, Ding Y, Li S T, Wang Z L 2015 ACS Nano 9 9822

    [24]

    Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578

    [25]

    Wang C H, Liao W S, Ku N J, Li Y C, Chen Y C, Tu L W, Liu C P 2014 Small 10 4718

    [26]

    Jiao Q Q, Chen Z Z, Ma J, Wang S Y, Li Y, Jiang S, Feng Y L, Li J Z, Chen Y F, Yu T J, Wang S F, Zhang G Y, Tian P F, Xie E Y, Gong Z, Gu E D, Dawson M D 2015 Opt. Express 23 237856

    [27]

    Hertog M D, Songmuang R, Gonzalez-Posada F, Monroy E 2013 Jpn. J. Appl. Phys. 52 11NG01

    [28]

    Kamiya T, Tajima K, Nomura K, Yanagi H, Hosono H 2008 Phys. Status Solidi A 205 1929

    [29]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [34]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [35]

    Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745

    [36]

    Junquera J, Cohen M H, Rabe K M 2007 J. Phys.: Condens. Matter 19 213203

    [37]

    Zhang G H, Zheng Y, Wang B 2013 J. Appl. Lett. 114 044111

    [38]

    Liu W, Zhang A H, Zhang Y, Wang Z L 2015 Nano Energy 14 355

    [39]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355

    [40]

    Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp102-112

  • [1] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [2] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [3] Wang Ya-Xun, Guo Di, Li Jian-Gao, Zhang Dong-Bo. Engineering of properties of low-dimensional materials via inhomogeneous strain. Acta Physica Sinica, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [4] Xu Yong-Hu, Deng Xiao-Qing, Sun Lin, Fan Zhi-Qiang, Zhang Zhen-Hua. Strain engineering of electronic structure and mechanical switch device for edge modified Net-Y nanoribbons. Acta Physica Sinica, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [5] Strain?Engineering of Electronic Structure and Mechanical Switch Device for Edge Modified Net-Y Nanoribbons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211748
    [6] Liu Di, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Phase field simulation of misfit strain manipulating domain structure and ferroelectric properties in PbZr(1–x)TixO3 thin films. Acta Physica Sinica, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [7] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [8] Xuan Sheng-Jie, Liu Yan. Control of skyrmion movement in nanotrack by using periodic strain. Acta Physica Sinica, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [9] Wang Xiao-Yuan, Zhao Feng-Peng, Wang Jie, Yan Ya-Bin. First-principle studies of mechanical, electronic properties and strain engineering of metal-organic framework. Acta Physica Sinica, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [10] Wen Juan-Hui, Yang Qiong, Cao Jue-Xian, Zhou Yi-Chun. Strain control of the leakage current of the ferroelectric thin films. Acta Physica Sinica, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [11] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [12] Sun Zhuan-Lan, Zhang Xiao-Qing, Cao Gong-Xun, Wang Xue-Wen, Xia Zhong-Fu. Preparation and piezoelectricity of fluorocarbon polymer piezoelectret films with ordered void structure. Acta Physica Sinica, 2010, 59(7): 5061-5066. doi: 10.7498/aps.59.5061
    [13] Zhang Xiao-Qing, Huang Jin-Feng, Wang Xue-Wen, Xia Zhong-Fu. Piezoelectricity of laminated polymer films made of nonporous fluoroethylene and porous polytetrafluoroethylene layers. Acta Physica Sinica, 2009, 58(5): 3525-3531. doi: 10.7498/aps.58.3525
    [14] Zhang Xiao-Qing, Huang Jin-Feng, Wang Fei-Peng, Xia Zhong-Fu. Piezoelectric properties and charge transport for fluorocarbon polymers with cellular structure. Acta Physica Sinica, 2008, 57(3): 1902-1907. doi: 10.7498/aps.57.1902
    [15] Zhang Peng-Feng, Xia Zhong-Fu, Qiu Xun-Lin, Wang Fei-Peng, Wu Xian-Yong. Influence of charging parameters on piezoelectricity for cellular PP film electrets. Acta Physica Sinica, 2006, 55(2): 904-909. doi: 10.7498/aps.55.904
    [16] Qiu Xun-Lin, Xia Zhong-Fu, An Zhen-Lian, Wu Xian-Yong. The piezoelectricity of heat-expanded PP cellular electret. Acta Physica Sinica, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
    [17] Zhang Peng-Feng, Xia Zhong-Fu, Qiu Xun-Lin, Wu Xian-Yong. The measurement of piezoelectric coefficient for PP cellular electret and the improvement of its piezoelectricity. Acta Physica Sinica, 2005, 54(1): 397-401. doi: 10.7498/aps.54.397
    [18] Wang Fei-Peng, Xia Zhong-Fu, Wu Yue-Hua, Qiu Xun-Lin. The piezoelectricity of P (VDF-TFE-HFP)/PTFE double-layer electret films. Acta Physica Sinica, 2004, 53(5): 1534-1539. doi: 10.7498/aps.53.1534
    [19] ZHU TAO, WANG YIN-JUN. TUNNELING GIANT MAGNETORESISTANCE IN Fe-Al2O3 GRANULAR FILMS. Acta Physica Sinica, 1999, 48(4): 763-768. doi: 10.7498/aps.48.763
    [20] HUANG ZHAO-MING, ZHUANG PEI-GI, JIANG ZU-TAO, YU GUI-FANG. A METHOD OF DYNAMIC MEASUREMENT OF THE PIEZOELECTRIC PROPERTY OF ADP CRYSTAL. Acta Physica Sinica, 1966, 22(8): 911-918. doi: 10.7498/aps.22.911
Metrics
  • Abstract views:  5877
  • PDF Downloads:  238
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2015
  • Accepted Date:  18 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map