Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new method to analyze the velocity spectrograms of photonic Doppler velocimetry

Sun Hai-Quan Wang Pei Chen Da-Wei Ma Dong-Jun

Citation:

A new method to analyze the velocity spectrograms of photonic Doppler velocimetry

Sun Hai-Quan, Wang Pei, Chen Da-Wei, Ma Dong-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ejecta mixing takes place at the interface between metal and gas under shock loading, i.e., the transport process of ejecta from metal surface happens in gas. Ejecta production and transport processes in gas are the focuses and key problems of shock wave physics at present. So far, extensive investigations have been devoted mainly to the ejecta formation from metal surface under shock-loaded conditions, and many experimental measurement techniques have been developed, such as the Asay foil, high-speed camera and holography technique. As a newly developed instrument, photon Doppler velocitymetry (PDV) which allows the simultaneous detection of velocities of multiple particles has been widely used in the dynamic impact areas, especially in micro-jetting and ejecta mixing experiments. Although PDV spectrogram includes abundant information about ejecta particles, it seems to be too hard to obtain the particle velocity history, which embarrasses the analysis and application of PDV spectrogram. In this paper, the equation of particle motion including the effects of aerodynamic damping force, pressure gradient force, and additional mass force is established, and the analytical solutions of the particle position and velocity are derived in the conditions of planar constant flow, constant flow, and constant acceleration flow. According to the analytical solutions, the characteristics of particle movement are analyzed. A simplified formulation of the relaxation time of the particle velocity, which reflects the particle decelerated speed, is given. And it is found that the relaxation time is proportional to the four-thirds power of particle diameter. Based on the characteristics of particle motion in the planar constant flow, a new method is proposed to analyze the spectrogram of PDV. The fastest velocity of particle in the mixing zone is obtained by extracting the upper part of PDV spectrogram. By integrating the fastest velocity, the time evolution of the head of mixing zone is deduced approximately. The thickness of the mixing zone can be obtained by subtracting the free surface position from the head of mixing zone. The relaxation time of particle velocity is inferred by the exponential fitting of the fastest velocity based on the motion equation of the particle in the planar constant flow. Furthermore, the equivalent diameter of the mixing zone head can also be obtained through the relaxation time. Based on the above methods, the spectrograms of various ejection mixing experiments under different shock-loaded conditions and gas environments are analyzed. The time evolutions of the mixing zone and equivalent diameter are presented, and the effects of shock loading strength and post-shock gas temperature on the mixing zone are analyzed. It is found that the deduced equivalent diameter in gas is smaller than that in vacuum, validating the pneumatic breakup of liquid metal particles in gas.
      Corresponding author: Wang Pei, wangpei@iapcm.ac.cn
    • Funds: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101021, 2015B0201043), the Foundation of State Key Laboratory of Computational Physics, China (Grant No. 9140C690103150C69302), and the National Natural Science Foundation of China (Grant No. U1530261).
    [1]

    Ogorodnikov V A, Mikhailov A L, Burtsev V V, Lobastov S A, Erunov S V, Romanov A V, Rudnev A V, Kulakov E V, Bazarov Y B, Glushikhin V V, Kalashnik I A, Tsyganov V A, Tkachenko B I 2009 J. Exp. Theor. Phys. 109 530

    [2]

    Or D M, Hammerberg J M, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [3]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Comput. Fluids 83177

    [4]

    He A M, Wang P, Shao J L, Duan S Q 2014 Chin. Phys. B 23 047102

    [5]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 61 234703]

    [6]

    Elias P, Chapron P, Mondot M 1989 Shock Compression of Condensed Matter Albuquerque, New Mexico, August 14-17, 1989 p783

    [7]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [8]

    Prudhomme G, Mercier P, Berthe L, Bnier J, Frugier P A 2014 J. Phys. Conf. Ser. 500 142022

    [9]

    Buttler W T, Or D M, Dimonte G, Morris C, Terrones G, Bainbridge J R, Hogan G E, Hollander B, Holtkamp D, Kwiatkowski K, Marr-Lyon M, Mariam F, Merrill F E, Nedrow P, Saunders A, Schwartz C L, Stone B, Tupa D, Vogan-Mcneil W S 2009 Report LA-UR-10-00739

    [10]

    Zhao X W, Li X Z, Wang X J, Song P, Zhang H Z, Wu Q 2015 Acta Phys. Sin. 64 124701 (in Chinese) [赵信文, 李欣竹, 王学军, 宋萍, 张汉钊, 吴强 2015 64 124701]

    [11]

    Mercier P, Bnier J, Frugier P A, Contencin G, Veaux J, Lauriot-Basseuil S, Debruyne M 2009 Proc. SPIE 7126 7126O

    [12]

    Prudhomme G, Mercier P, Berthe L 2014 J. Phys. Conf. Ser. 500 142027

    [13]

    Fedorov A V, Mikhailov A L, Finyushin S A, Nazarov D V, Chudakov E A, Kalashnikov D A, Butusov E I 2013 Report Study of lead behavior features at shock loading and further unloading, Biennial Intl. Conference of the APS Topical Group on Shock Compression of Condensed Mater-2013

    [14]

    Fang D Y 1988 Two Phase Flow Mechanics (Changsha: Science and Technology of National Defense Publisher) pp82-84 (in Chinese) [方丁酉 1988 两相流动力学(长沙: 国防科技大学出版社)第82-84页]

    [15]

    Sorenson D S, Pazuchanics P, Johnson R P, Malone R M, Kaufman M I, Tibbitts A, Tunnell T, Marks D, Capelle G A, Grover M, Marshall B, Stevens G D, Turley W D, Lalone B 2014 Report LA-UR-14-24722

  • [1]

    Ogorodnikov V A, Mikhailov A L, Burtsev V V, Lobastov S A, Erunov S V, Romanov A V, Rudnev A V, Kulakov E V, Bazarov Y B, Glushikhin V V, Kalashnik I A, Tsyganov V A, Tkachenko B I 2009 J. Exp. Theor. Phys. 109 530

    [2]

    Or D M, Hammerberg J M, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [3]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Comput. Fluids 83177

    [4]

    He A M, Wang P, Shao J L, Duan S Q 2014 Chin. Phys. B 23 047102

    [5]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 61 234703]

    [6]

    Elias P, Chapron P, Mondot M 1989 Shock Compression of Condensed Matter Albuquerque, New Mexico, August 14-17, 1989 p783

    [7]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [8]

    Prudhomme G, Mercier P, Berthe L, Bnier J, Frugier P A 2014 J. Phys. Conf. Ser. 500 142022

    [9]

    Buttler W T, Or D M, Dimonte G, Morris C, Terrones G, Bainbridge J R, Hogan G E, Hollander B, Holtkamp D, Kwiatkowski K, Marr-Lyon M, Mariam F, Merrill F E, Nedrow P, Saunders A, Schwartz C L, Stone B, Tupa D, Vogan-Mcneil W S 2009 Report LA-UR-10-00739

    [10]

    Zhao X W, Li X Z, Wang X J, Song P, Zhang H Z, Wu Q 2015 Acta Phys. Sin. 64 124701 (in Chinese) [赵信文, 李欣竹, 王学军, 宋萍, 张汉钊, 吴强 2015 64 124701]

    [11]

    Mercier P, Bnier J, Frugier P A, Contencin G, Veaux J, Lauriot-Basseuil S, Debruyne M 2009 Proc. SPIE 7126 7126O

    [12]

    Prudhomme G, Mercier P, Berthe L 2014 J. Phys. Conf. Ser. 500 142027

    [13]

    Fedorov A V, Mikhailov A L, Finyushin S A, Nazarov D V, Chudakov E A, Kalashnikov D A, Butusov E I 2013 Report Study of lead behavior features at shock loading and further unloading, Biennial Intl. Conference of the APS Topical Group on Shock Compression of Condensed Mater-2013

    [14]

    Fang D Y 1988 Two Phase Flow Mechanics (Changsha: Science and Technology of National Defense Publisher) pp82-84 (in Chinese) [方丁酉 1988 两相流动力学(长沙: 国防科技大学出版社)第82-84页]

    [15]

    Sorenson D S, Pazuchanics P, Johnson R P, Malone R M, Kaufman M I, Tibbitts A, Tunnell T, Marks D, Capelle G A, Grover M, Marshall B, Stevens G D, Turley W D, Lalone B 2014 Report LA-UR-14-24722

  • [1] Hao Ge-Yang, Yang Yu-Cheng, Zhao Rong-Juan, Lü Xiao-Peng, Yang Ya-Han, Wu Guo-Jun. Velocity history measurement of hypersonic tunnel driver based on photon Doppler velocimeter. Acta Physica Sinica, 2022, 71(23): 234208. doi: 10.7498/aps.71.20221234
    [2] Zhou Yi-Xian. Analysis of the granular pressure and velocity field of hourglass flow based on the local constitutive law. Acta Physica Sinica, 2019, 68(13): 134701. doi: 10.7498/aps.68.20182205
    [3] Xu Min, Shen Jin, Huang Yu, Xu Ya-Nan, Zhu Xin-Jun, Wang Ya-Jing, Liu Wei, Gao Ming-Liang. Weighting inversion of dynamic light scattering based on particle-size information distribution character. Acta Physica Sinica, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [4] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [5] Xin Jian-Ting, Zhao Yong-Qiang, Chu Gen-Bai, Xi Tao, Shui Min, Fan Wei, He Wei-Hua, Gu Yu-Qiu. Experimental investigation of tin fragments mixing with gas subjected to laser driven shock. Acta Physica Sinica, 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [6] Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Zhong-Yang, Zhang Qing-Bing. Characteristics of convective speeds of vortex structures in mixing layer. Acta Physica Sinica, 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [7] Meng Fan-Jing, Liu Kun. Velocity fluctuation and self diffusion character in a dense granular sheared flow studied by discrete element method. Acta Physica Sinica, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [8] Zheng Shi-Lian, Yang Xiao-Niu. Swarm initialization of shuffled frog leaping algorithm for cooperative spectrum sensing in cognitive radio. Acta Physica Sinica, 2013, 62(7): 078405. doi: 10.7498/aps.62.078405
    [9] Zhang Ke-Sheng, Wang Shu, Zhu Ming, Hu Yi, Jia Ya-Qiong. Analytical model for acoustic multi-relaxation spectrum in gas mixtures. Acta Physica Sinica, 2012, 61(17): 174301. doi: 10.7498/aps.61.174301
    [10] Peng Jing-Si, Peng Hu. Chaotic frequency-modulating continuous wave for an ultrasonic doppler blood flow velocity measurement system. Acta Physica Sinica, 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [11] Zheng Shi-Lian, Lou Cai-Yi, Yang Xiao-Niu. Cooperative spectrum sensing for cognitive radios based on a modified shuffled frog leaping algorithm. Acta Physica Sinica, 2010, 59(5): 3611-3617. doi: 10.7498/aps.59.3611
    [12] Gao Ji-Hua, Xie Ling-Ling, Peng Jian-Hua. Controlling spatiotemporal chaos by speed feedback method. Acta Physica Sinica, 2009, 58(8): 5218-5223. doi: 10.7498/aps.58.5218
    [13] Li Hong-Xing, Tao Chun-Hui, Zhou Jian-Ping, Deng Ju-Zhi, Deng Xian-Ming, Fang Gen-Xian. Modified effective medium modeling and seismic wave field in un-cemented marine sediments with hydrates. Acta Physica Sinica, 2009, 58(11): 8083-8093. doi: 10.7498/aps.58.8083
    [14] Xiao Rui-Jie, Kong Ling-Jiang, Liu Mu-Ren. The influence of the length and the velocy of vehicles on the mixed traffic flow in one-lane highway. Acta Physica Sinica, 2007, 56(2): 740-746. doi: 10.7498/aps.56.740
    [15] Huang De-Cai, Sun Gang, Hou Mei-Ying, Lu Kun-Quan. The effect of the granule velocity on the dilute-dense flow transition in granular system. Acta Physica Sinica, 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [16] Tao Chao-Hai, Lu Jun-An. Speed feedback synchronization of a chaotic system. Acta Physica Sinica, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [17] Xue Yu. A car-following model with stochastically considering the relative velocity in a traffic flow. Acta Physica Sinica, 2003, 52(11): 2750-2756. doi: 10.7498/aps.52.2750
    [18] Bao De-Song, Zhang Xun-Sheng, Xu Guang-Lei, Pan Zheng-Quan, Tang Xiao-Wei, Lu Kun- Quan. The choke effect on a two-dimensional granular flow and the relation with its speed. Acta Physica Sinica, 2003, 52(2): 401-404. doi: 10.7498/aps.52.401
    [19] HUNG CHING, YEH E-CHENG. VELOCITY OF DISLOCATIONS IN SILICON CRYSTALS. Acta Physica Sinica, 1965, 21(12): 1968-1976. doi: 10.7498/aps.21.1968
    [20] . Acta Physica Sinica, 1964, 20(7): 682-684. doi: 10.7498/aps.20.682
Metrics
  • Abstract views:  6125
  • PDF Downloads:  203
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2015
  • Accepted Date:  02 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map