-
受限于计算流体力学方法的模型及计算量, 地面风洞模拟试验仍是现阶段开展高超声速过程研究的主要技术手段. 本文针对高焓膨胀管/激波风洞的自由流参数精细调控、安全稳定运行及有效试验时间提升等需求, 利用光子多普勒测速技术实现了对不同驱动段压力情况下, 自由活塞运动全程速度变化情况的连续跟踪测量. 驱动压力为1.3 MPa时, 活塞速度的数值仿真最高速度88.981 m/s, 实测最高运动速度88.810 m/s, 相对偏差为–0.19%; 活塞驱动压力为2.7 MPa时, 活塞数值仿真最高速度125.100 m/s, 实测最高运动速度123.843 m/s, 相对偏差为–1.00%, 为该风洞的性能优化及稳定运行提供了重要数据支撑.The research of hypersonic process is limited by the transition model, the turbulence model, and the computational complexity. At present the tunnel test is still a better way to investigate the hypersonic process than the computational fluid dynamic (CFD) method. In this work, the principle and structure of all-fiber photon Doppler velocimeter (PDV) are introduced. The PDV is based on laser Doppler effect and consists of an all-fiber Mach Zehnder interferometer and an optical antenna. The measurement accuracy and distance of PDV are tested, showing that the error can be controlled to be within 0.17 m/s when the velocity of piston is below 40 m/s. At the same time, the measured distance of PDV can reach 26.3 m. The continuous velocity of the free piston is measured by using the PDV in high enthalpy expansion tunnel of China aerodynamics research and development center (CARDC). During the tunnel tests, the PDV is placed next to the tunnel, and the optical antenna is installed behind the observation window of the tunnel and connected to a circulator by optical fiber. When the driving pressure of the tunnel is 1.3 MPa, the maximum numerical simulation velocity of the piston is 88.981 m/s, and the velocity is measured to be 88.810 m/s with a relative deviation of –0.19%; when the driving pressure of the tunnel is 2.7 MPa, the maximum numerical simulation velocity of the piston is 125.100 m/s, the measured velocity is 123.843 m/s, and the relative deviation is –1.00%. The piston reaches a maximum velocity before impacting on the tunnel, and then decelerates rapidly under the joint action of the driving pressure and compression wave. Therefore, the soft landing of the piston proves feasible, which is put forward by Stallkerin the 1960s. Finally, the reasons why PDV missed the impact velocity of piston is discussed. Through the analysis of received intensity, it is believed that the absorption, scattering and expansion of the laser beam caused by the strong driving pressure is the main reason.
[1] Trimble S 2021 Hypersonic Weapons Make Big Gains in Biden Budget [2021-06-04]
[2] 阎超, 屈峰, 赵雅甜, 于剑, 武从海, 张树海 2020 空气动力学学报 38 829Google Scholar
Yan C, Qu F, Zhao Y J, Yu J, Wu C H, Zhang S H 2020 Acta Aerodyn. Sin. 38 829Google Scholar
[3] 龚红明, 常雨, 廖振洋, 吕治国, 孔荣宗, 张扣立, 罗义成 2022 气体物理 7 32Google Scholar
Gong H M, Chang Y, Liao Z Y, Lü Z G, Kong R Z, Zhang K L, Luo Y C 2022 Phys. Gases 7 32Google Scholar
[4] Dann A G, Morgan R G, Gildfind D E, Jacobs P A, Mcgilvray M, Zander F 2012 Proceedings of the 18th Australasian Fluid Mechanics Conference Launceston, Australia, December 3−7, 2012 p263
[5] Gildfind D E, Morgan R G, Jacobs P A, Mcgilvray M 2014 AIAA Journal 52 162Google Scholar
[6] Dufrene A, Maclean M, Holden M 2012 43rd AIAA Thermophysics Conference New Orleans, United States, June 25−28, 2012 p2998
[7] Holden M S, Wadhams T P, MacLean M, Dufrene A 2015 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference Glasgow, Scotland, July 6−9, 2015 p3660
[8] 陈星, 谌君谋, 毕志献, 马汉东 2019 实验流体力学 33 65Google Scholar
Chen X, Shen J M, Bi Z X, Ma H D 2019 J. Exper. Fluid Mech. 33 65Google Scholar
[9] 吕治国, 常雨, 廖振洋 2019 中国力学学会激波与激波管分会 中国杭州, 8.26—8.29, 2019
Lü Z G, Chang Y, Liao Z Y 2019 Shock Wave and Shock Tube Branch of Chinese Mechanical Society Hangzhou, China, August 26−29, 2019 (in Chinese)
[10] 龚红明, 常雨, 吕治国 2020 第三届全国行星防御研讨会 中国南京, 8.20—8.23, 2020
Gong H M, Chang Y, Lü Z G 2020 The 3rd National Planetary Defense Symposium Nanjing, China, August 20−23, 2020 (in Chinese)
[11] 朱浩, 沈清, 宫建 2014 空气动力学学报 32 45Google Scholar
Zhu H, Shen Q, Gong J 2014 Acta Aerodyn. Sin. 32 45Google Scholar
[12] Itoh K, Ueda S, Komuro T, Sato K, Takahashi M, Miyajima H, Tanno H, Muramoto H 1998 Shock Waves 8 215Google Scholar
[13] 孙日明, 谌君谋, 陈星 2020 应用科技 47 58
Sun R M, Shen J M, Chen X 2020 Appl. Sci. Technol. 47 58
[14] Hao G Y, Cui Y, Yang Y C, Lü X P, Wu G J 2020 Opt. Fiber Technol. 60 102333Google Scholar
[15] Hao G Y, Wu G J, Lü P, Yang Y C, Lü X P 2019 CN Patent ZL201910967423.3 [2019-10-12]
[16] Hao G Y, Lü P, Wu G J, Yang Y C, Lü X P 2019 CN Patent ZL201910967426.7 [2019-10-12]
[17] Stalker R J 1967 AIAA Journal 5 2160Google Scholar
-
表 1 40 m/s以下速度段速度测量误差检测结果
Table 1. Test results of the measuring accuracy of PDV under 40 m/s.
测量距离/
m转速标
称值/
(r·min–1)理论速度
计算值/
(m·s–1)实测速度
计算值/
(m·s–1)速度测量
误差/
(m·s–1)不确定
度Urel
(k = 2)21.7 50 0.9320 0.9387 –0.0067 — 80 1.4912 1.4930 –0.0018 — 100 1.8640 1.8630 0.0010 — 200 3.7280 3.7400 –0.0120 — 500 9.3201 9.3570 –0.0369 — 800 14.9122 14.970 –0.0578 — 1000 18.6402 18.570 0.0702 — 1200 22.3682 22.480 –0.1118 1×10–4 1500 27.9603 28.090 –0.1297 — 1800 33.5523 33.670 –0.1177 — 2000 37.2804 37.450 0.1696 — 26.3 100 1.9269 1.9220 0.0049 — 500 9.6343 9.6160 0.0183 — 1000 19.2685 19.250 0.0185 — 2000 38.5371 38.560 –0.0229 — -
[1] Trimble S 2021 Hypersonic Weapons Make Big Gains in Biden Budget [2021-06-04]
[2] 阎超, 屈峰, 赵雅甜, 于剑, 武从海, 张树海 2020 空气动力学学报 38 829Google Scholar
Yan C, Qu F, Zhao Y J, Yu J, Wu C H, Zhang S H 2020 Acta Aerodyn. Sin. 38 829Google Scholar
[3] 龚红明, 常雨, 廖振洋, 吕治国, 孔荣宗, 张扣立, 罗义成 2022 气体物理 7 32Google Scholar
Gong H M, Chang Y, Liao Z Y, Lü Z G, Kong R Z, Zhang K L, Luo Y C 2022 Phys. Gases 7 32Google Scholar
[4] Dann A G, Morgan R G, Gildfind D E, Jacobs P A, Mcgilvray M, Zander F 2012 Proceedings of the 18th Australasian Fluid Mechanics Conference Launceston, Australia, December 3−7, 2012 p263
[5] Gildfind D E, Morgan R G, Jacobs P A, Mcgilvray M 2014 AIAA Journal 52 162Google Scholar
[6] Dufrene A, Maclean M, Holden M 2012 43rd AIAA Thermophysics Conference New Orleans, United States, June 25−28, 2012 p2998
[7] Holden M S, Wadhams T P, MacLean M, Dufrene A 2015 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference Glasgow, Scotland, July 6−9, 2015 p3660
[8] 陈星, 谌君谋, 毕志献, 马汉东 2019 实验流体力学 33 65Google Scholar
Chen X, Shen J M, Bi Z X, Ma H D 2019 J. Exper. Fluid Mech. 33 65Google Scholar
[9] 吕治国, 常雨, 廖振洋 2019 中国力学学会激波与激波管分会 中国杭州, 8.26—8.29, 2019
Lü Z G, Chang Y, Liao Z Y 2019 Shock Wave and Shock Tube Branch of Chinese Mechanical Society Hangzhou, China, August 26−29, 2019 (in Chinese)
[10] 龚红明, 常雨, 吕治国 2020 第三届全国行星防御研讨会 中国南京, 8.20—8.23, 2020
Gong H M, Chang Y, Lü Z G 2020 The 3rd National Planetary Defense Symposium Nanjing, China, August 20−23, 2020 (in Chinese)
[11] 朱浩, 沈清, 宫建 2014 空气动力学学报 32 45Google Scholar
Zhu H, Shen Q, Gong J 2014 Acta Aerodyn. Sin. 32 45Google Scholar
[12] Itoh K, Ueda S, Komuro T, Sato K, Takahashi M, Miyajima H, Tanno H, Muramoto H 1998 Shock Waves 8 215Google Scholar
[13] 孙日明, 谌君谋, 陈星 2020 应用科技 47 58
Sun R M, Shen J M, Chen X 2020 Appl. Sci. Technol. 47 58
[14] Hao G Y, Cui Y, Yang Y C, Lü X P, Wu G J 2020 Opt. Fiber Technol. 60 102333Google Scholar
[15] Hao G Y, Wu G J, Lü P, Yang Y C, Lü X P 2019 CN Patent ZL201910967423.3 [2019-10-12]
[16] Hao G Y, Lü P, Wu G J, Yang Y C, Lü X P 2019 CN Patent ZL201910967426.7 [2019-10-12]
[17] Stalker R J 1967 AIAA Journal 5 2160Google Scholar
计量
- 文章访问数: 3386
- PDF下载量: 41
- 被引次数: 0