Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shock X-ray emission image measurement in Z-pinch dynamic hohlraum

Meng Shi-Jian Huang Zhan-Chang Ning Jia-Min Hu Qing-Yuan Ye Fan Qin Yi Xu Ze-Ping Xu Rong-Kun

Citation:

Shock X-ray emission image measurement in Z-pinch dynamic hohlraum

Meng Shi-Jian, Huang Zhan-Chang, Ning Jia-Min, Hu Qing-Yuan, Ye Fan, Qin Yi, Xu Ze-Ping, Xu Rong-Kun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Owing to high efficiency for delivering thermal radiation from Z-pinch plasma to an inertial fusion capsule, Z-pinch dynamic hohlraum (ZPDH) is a promising indirect-drive inertial confinement fusion (ICF) approach. ZPDH is created by accelerating an annular tungsten Z-pinch plasma radially inward to an internal low density convertor. The collision launches a radiating shock traveling inward. Radiations emitted from the shock, after being trapped and thermalized by the optically thick tungsten plasma, drive the internal fusion capsule to implode. In our previous experiments, shock propagating process has never been imaged or even never been formed, due to low drive current (about 1.3 MA). In this paper, the ZPDH has a load of single tungsten wire array embedded in a cylindrical 16 mg/cm3 C15H20O6 foam, and the tungsten wire array is explored using JuLong-1 facility (also named PTS facility) driven by current with a peak value of 7-8 MA and rising time of 60-70 ns (from 10% to 90%). Several results are presented for improving the understanding of the physics of the shock propagating and hohlraum forming. For the high optical depth in tungsten plasmas around the foam, radially directly diagnosing hohlraum radiation distribution along axis is impossible. The most convenient way to diagnose the radiation symmetry and the shock evolution is to take the end-on X-ray images. The time-resolved X-ray images of annular radiating shock evolution, which are performed with a 10-frame time-gated X-ray pinhole camera located at 0 with respect to the Z-pinch axis, are obtained for the first time in China. By analyzing the radial X-ray emission power waveform and intensity distribution of end-on radiation image, the process of wire array plasma impacting on the foam convertor and properties of dynamic hohlraum radiation are discussed. The shock emission structures are found to be circular, similar to the results predicted theoretically. The shock velocity which seems to be constant in the whole process of inward propagating is linearly fitted to be (14.21.7) cm/s. The annular width of shock emission is 0.8-0.9 mm, which is inferred from the full width at half maximum of radial lineout of end-on X-ray image at time t=-11.9 ns and the blurring effect of shock velocity. The radiation symmetry is assessed by statistic property of mean intensity of 36 sectors of end-on X-ray image evenly divided by 10. The standard deviation of azimuthal shock emission intensity is 10% while that of hohlraum region prior to shock impact is 4.2%. The azimuthal symmetry improvement from shock emission to hohlraum radiation is a piece of exciting news for ZPDH driven ICF.
      Corresponding author: Meng Shi-Jian, mengsj04@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11135007, 11305154).
    [1]

    Leaper R J, Alberts T E, Asay J R, Baca P M, Baker K L, Breeze S P, Chandler G A, Cook D L, Cooper G W, Deeney C, Derzon M S, Douglas M R, Fehl D L, Gilliland T, Hebron D E, Hurst M J, Jobe D O, Kellogg J W, Lash J S, Lazier S E, Matzen M K, McDaniel D H, McGurn J S, Mehlhorn T A, Moats A R, Mock R C, Muron D J, Nash T J, Olson R E, Porter J L, Quintenz J P, Reyes P V, Ruggles L E, Ruiz C L, Sanford T W L, Schmidlapp F A, Seamen J F, Spielman R B, Stark M A, Struve K W, Stygar W A, Tibbetts-Russell D R, Torres J A, Vargas T, Wagoner T C, Wakefield C, Hammer J H, Ryutov D D, Tabak M, Wilks S C, Bowers R L, McLenithan K D, Peterson D L 1999 Nucl. Fusion 39 1283

    [2]

    Nash T J, Derzon M S, Chandler G A, Leeper R, Fehl D, Lash J, Ruiz C, Cooper G, Seaman J F, McGurn J, Lazier S, Torres J, Jobe D, Gilliland T, Hurst M, Mock R, Ryan P, Nielsen D, Armijo J, McKenney J, Hawn R, Hebron D, MacFarlane J J, Petersen D, Bowers R, Matuska W, Ryutov D D 1999 Phys. Plasmas 6 2023

    [3]

    Slutz S A, Bailey J E, Chandler G A, Bennett G R, Cooper G, Lash J S, Lazier S, Lake P, Lemke R W, Mehlhorn T A, Nash T J, Nielson D S, McGurn J, Moore T C, Ruiz C L, Schroen D G, Torres J, Varnum W, Vesey R A 2003 Phys. Plasmas 10 1875

    [4]

    Bailey J E, Chandler G A, Slutz S A, Bennett G R, Cooper G, Lash J S, Lazier S, Lemke R, Nash T J, Nielsen D S, Moore T C, Ruiz C L, Schroen D G, Smelser R, Torres J, Vesey R A 2002 Phys. Rev. Lett. 89 095004

    [5]

    Bailey J E, Chandler G A, Mancini R C, Slutz S A, Rochau G A, Bump M, Buris-Mog T J, Cooper G, Dunham G, Golovkin I, Kilkenny J D, Lake P W, Leeper R J, Lemke R, MacFarlane J J, Mehlhorn T A, Moore T C, Nash T J, Nikroo A, Nielsen D S, Peterson K L, Ruiz C L, Schroen D G, Steinman D, Varnum W 2006 Phys. Plasmas 13 056301

    [6]

    Sanford T W L, Nash T J, Mock R C, Apruzese J P, Peterson D L 2006 Phys. Plasmas 13 012701

    [7]

    Rochau G A, Bailey J E, Maron Y, Chandler G A, Dunham G S, Fisher D V, Fisher V I, Lemke R W, MacFarlane J J, Peterson K J, Schroen D G, Slutz S A, Stambulchik E 2008 Phys. Rev. Lett. 100 125004

    [8]

    Slutz S A, Peterson K J, Vesey R A, Lemke R W, Bailey J E, Varnum W, Ruiz C L, Cooper G W, Chandler G A, Rochau G A, Mehlhorn T A 2006 Phys. Plasmas 13 102701

    [9]

    Chen F X, Feng J H, Li L B, Yang J L, Zhou L, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 045204 (in Chinese) [陈法新, 冯璟华, 李林波, 杨建伦, 周林, 徐荣昆, 许泽平 2013 62 045204]

    [10]

    Jiang S Q, Ning J M, Chen F X, Ye F, Xue F B, Li L B, Yang J L, Chen J C, Zhou L, Qin Y, Li Z H, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 155203 (in Chinese) [蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平 2013 62 155203]

    [11]

    Xiao D L, Ding N, Ye F, Ning J M, Hu Q Y, Chen F X, Qin Y, Xu R K, Li Z H, Sun S K 2014 Phys. Plasmas 21 042704

    [12]

    Xiao D L, Sun S K, Zhao X K, Ding N, Wu J M, Dai Z H, Yin L, Zhang Y, Xue C 2015 Phys. Plasmas 22 052709

    [13]

    Dan J K, Ren X D, Huang X B, Zhang S Q, Zhou S T, Duan S C, Ou Y K, Cai H C, Wei B, Ji C, He A, Xia M H, Feng S P, Wang M, Xie W P 2013 Acta Phys. Sin. 62 245201 (in Chinese) [但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平 2013 62 245201]

  • [1]

    Leaper R J, Alberts T E, Asay J R, Baca P M, Baker K L, Breeze S P, Chandler G A, Cook D L, Cooper G W, Deeney C, Derzon M S, Douglas M R, Fehl D L, Gilliland T, Hebron D E, Hurst M J, Jobe D O, Kellogg J W, Lash J S, Lazier S E, Matzen M K, McDaniel D H, McGurn J S, Mehlhorn T A, Moats A R, Mock R C, Muron D J, Nash T J, Olson R E, Porter J L, Quintenz J P, Reyes P V, Ruggles L E, Ruiz C L, Sanford T W L, Schmidlapp F A, Seamen J F, Spielman R B, Stark M A, Struve K W, Stygar W A, Tibbetts-Russell D R, Torres J A, Vargas T, Wagoner T C, Wakefield C, Hammer J H, Ryutov D D, Tabak M, Wilks S C, Bowers R L, McLenithan K D, Peterson D L 1999 Nucl. Fusion 39 1283

    [2]

    Nash T J, Derzon M S, Chandler G A, Leeper R, Fehl D, Lash J, Ruiz C, Cooper G, Seaman J F, McGurn J, Lazier S, Torres J, Jobe D, Gilliland T, Hurst M, Mock R, Ryan P, Nielsen D, Armijo J, McKenney J, Hawn R, Hebron D, MacFarlane J J, Petersen D, Bowers R, Matuska W, Ryutov D D 1999 Phys. Plasmas 6 2023

    [3]

    Slutz S A, Bailey J E, Chandler G A, Bennett G R, Cooper G, Lash J S, Lazier S, Lake P, Lemke R W, Mehlhorn T A, Nash T J, Nielson D S, McGurn J, Moore T C, Ruiz C L, Schroen D G, Torres J, Varnum W, Vesey R A 2003 Phys. Plasmas 10 1875

    [4]

    Bailey J E, Chandler G A, Slutz S A, Bennett G R, Cooper G, Lash J S, Lazier S, Lemke R, Nash T J, Nielsen D S, Moore T C, Ruiz C L, Schroen D G, Smelser R, Torres J, Vesey R A 2002 Phys. Rev. Lett. 89 095004

    [5]

    Bailey J E, Chandler G A, Mancini R C, Slutz S A, Rochau G A, Bump M, Buris-Mog T J, Cooper G, Dunham G, Golovkin I, Kilkenny J D, Lake P W, Leeper R J, Lemke R, MacFarlane J J, Mehlhorn T A, Moore T C, Nash T J, Nikroo A, Nielsen D S, Peterson K L, Ruiz C L, Schroen D G, Steinman D, Varnum W 2006 Phys. Plasmas 13 056301

    [6]

    Sanford T W L, Nash T J, Mock R C, Apruzese J P, Peterson D L 2006 Phys. Plasmas 13 012701

    [7]

    Rochau G A, Bailey J E, Maron Y, Chandler G A, Dunham G S, Fisher D V, Fisher V I, Lemke R W, MacFarlane J J, Peterson K J, Schroen D G, Slutz S A, Stambulchik E 2008 Phys. Rev. Lett. 100 125004

    [8]

    Slutz S A, Peterson K J, Vesey R A, Lemke R W, Bailey J E, Varnum W, Ruiz C L, Cooper G W, Chandler G A, Rochau G A, Mehlhorn T A 2006 Phys. Plasmas 13 102701

    [9]

    Chen F X, Feng J H, Li L B, Yang J L, Zhou L, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 045204 (in Chinese) [陈法新, 冯璟华, 李林波, 杨建伦, 周林, 徐荣昆, 许泽平 2013 62 045204]

    [10]

    Jiang S Q, Ning J M, Chen F X, Ye F, Xue F B, Li L B, Yang J L, Chen J C, Zhou L, Qin Y, Li Z H, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 155203 (in Chinese) [蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平 2013 62 155203]

    [11]

    Xiao D L, Ding N, Ye F, Ning J M, Hu Q Y, Chen F X, Qin Y, Xu R K, Li Z H, Sun S K 2014 Phys. Plasmas 21 042704

    [12]

    Xiao D L, Sun S K, Zhao X K, Ding N, Wu J M, Dai Z H, Yin L, Zhang Y, Xue C 2015 Phys. Plasmas 22 052709

    [13]

    Dan J K, Ren X D, Huang X B, Zhang S Q, Zhou S T, Duan S C, Ou Y K, Cai H C, Wei B, Ji C, He A, Xia M H, Feng S P, Wang M, Xie W P 2013 Acta Phys. Sin. 62 245201 (in Chinese) [但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平 2013 62 245201]

  • [1] Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion. Acta Physica Sinica, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [2] Zhang Yang, Sun Shun-Kai, Ding Ning, Li Zheng-Hong, Shu Xiao-Jian. Basic dynamic and scale study of quasi-spherical Z-pinch implosion. Acta Physica Sinica, 2017, 66(10): 105203. doi: 10.7498/aps.66.105203
    [3] Wu Fu-Yuan, Chu Yan-Yun, Ye Fan, Li Zheng-Hong, Yang Jian-Lun, Rafael Ramis, Wang Zhen, Qi Jian-Min, Zhou Lin, Liang Chuan. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI. Acta Physica Sinica, 2017, 66(21): 215201. doi: 10.7498/aps.66.215201
    [4] Chen Zhong-Wang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z. Acta Physica Sinica, 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [5] Xiao De-Long, Sun Shun-Kai, Xue Chuang, Zhang Yang, Ding Ning. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation. Acta Physica Sinica, 2015, 64(23): 235203. doi: 10.7498/aps.64.235203
    [6] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [7] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Separating the Z-pinch plasma X-ray radiation and attaining the electron temperature. Acta Physica Sinica, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [8] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [9] Ye Fan, Xue Fei-Biao, Chu Yan-Yun, Si Fen-Ni, Hu Qing-Yuan, Ning Jia-Min, Zhou Lin, Yang Jian-Lun, Xu Rong-Kun, Li Zheng-Hong, Xu Ze-Ping. Experimental study on current division of nested wire array Z pinches. Acta Physica Sinica, 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [10] Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping. Electromagnetic pulse emission produced by Z pinch implosions. Acta Physica Sinica, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [11] Chen Fa-Xin, Feng Jing-Hua, Li Lin-Bo, Yang Jian-Lun, Zhou Lin, Xu Rong-Kun, Xu Ze-Ping. Study of Z-pinch dynamic hohlraum shadowgraphy. Acta Physica Sinica, 2013, 62(4): 045204. doi: 10.7498/aps.62.045204
    [12] Zhou Shao-Tong, Li Jun, Huang Xian-Bin, Cai Hong-Chun, Zhang Si-Qun, Li Jing, Duan Shu-Chao, Zhou Rong-Guo. Experimental investigation of radiation charactristics of Ti wire X-pinch X-ray source on Yang accelerator. Acta Physica Sinica, 2012, 61(16): 165202. doi: 10.7498/aps.61.165202
    [13] Cao Zhu-Rong, Zhang Hai-Ying, Dong Jian-Jun, Yuan Zheng, Miao Wen-Yong, Liu Shen-Ye, Jiang Shao-En, Ding Yong-Kun. High dynamic range imaging and application to laser-plasma diagnostics in inertial confinement fusion (ICF) experiment. Acta Physica Sinica, 2011, 60(4): 045212. doi: 10.7498/aps.60.045212
    [14] Zhang Fa-Qiang, Wang Zhen, Xu Ze-Ping, Jiang Shi-Lun, V. P. Smirnov, Ning Jia-Min, Li Lin-Bo, Zhou Xiu-Wen, E. V. Grabovsky, G. M. Oleynic, V. V. Alexandrov, Ding Ning, Xu Rong-Kun, Li Zheng-Hong, Yang Jian-Lun. New results of Sino-Russian joint Z-pinch experiments. Acta Physica Sinica, 2011, 60(4): 045208. doi: 10.7498/aps.60.045208
    [15] Xia Guang-Xin, Zhang Fa-Qiang, Xu Ze-Ping, Xu Rong-Kun, Chen Jin-Chuan, Ning Jia-Min. Radiation characteristics of single wire array Z-pinch implosion. Acta Physica Sinica, 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [16] Wu Gang, Qiu Ai-Ci, Lü Min, Kuai Bin, Wang Liang-Ping, Cong Pei-Tian, Qiu Meng-Tong, Lei Tian-Shi, Sun Tie-Ping, Guo Ning, Han Juan-Juan, Zhang Xin-Jun, Huang Tao, Zhang Guo-Wei, Qiao Kai-Lai. Experimental study on K-shell radiation production of aluminum wire array Z-pinch at Qiangguang-I facility. Acta Physica Sinica, 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [17] Ning Cheng, Ding Ning, Liu Quan, Yang Zhen-Hua. Studies of implosion processes of nested tungsten wire-array Z-pinch. Acta Physica Sinica, 2006, 55(7): 3488-3493. doi: 10.7498/aps.55.3488
    [18] Huang Xian-Bin, Yang Li-Bing, Gu Yuan-Chao, Deng Jian-Jun, Zhou Rong-Guo, Zou Jie, Zhou Shao-Tong, Zhang Si-Qun, Chen Guang-Hua, Chang Li-Hua, Li Feng-Ping, Ouyang Kai, Li Jun, Yang Liang, Wang Xiong. Experimental studies of the argon-puff Z-pinch implosion process. Acta Physica Sinica, 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [19] Qiu Ai-Ci, Kuai Bin, Zeng Zheng-Zhong, Wang Wen-Sheng, Qiu Meng-Tong, Wang Liang-Ping, Cong Pei-Tian, Lü Min. Study on W wire array Z pinch plasma radiation at Qiangguang-Ⅰ facility. Acta Physica Sinica, 2006, 55(11): 5917-5922. doi: 10.7498/aps.55.5917
    [20] Ning Cheng, Li Zheng-Hong, Hua Xin-Sheng, Xu Rong-Kun, Peng Xian-Jue, Xu Ze-Ping, Yang Jian-Lun, Guo Cun, Jiang Shi-Lun, Feng Shu-Ping, Yang Li-Bing, Yan Cheng-Li, Song Feng-Jun, V. P. Smirnov, Yu. G. Kalinin, A. S. Kingsep, A. S. Chernenko, E. V. Grabovsky. Experimental studies of Z-pinches of mixed wire array with aluminum and tungsten. Acta Physica Sinica, 2004, 53(7): 2244-2249. doi: 10.7498/aps.53.2244
Metrics
  • Abstract views:  6450
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2015
  • Accepted Date:  12 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map