Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation

Xiao De-Long Sun Shun-Kai Xue Chuang Zhang Yang Ding Ning

Citation:

Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation

Xiao De-Long, Sun Shun-Kai, Xue Chuang, Zhang Yang, Ding Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Dynamic hohlraum is a possible selection to drive inertial confinement fusion. Currently, the ~8 MA PTS facility in China has been completed, which provides a powerful experimental platform of relatively large drive current for researches of dynamic hohlraums and dynamic hohlraum driven inertial fusion. To understand the formation processes and the main characteristics of the dynamic hohlraum, and explore the most important issues affecting the optimization of hohlraum radiation, is not only fundamental in the research of dynamic hohlraums, especially for the experimental design, but also can provide a physical insight for the experimental diagnosis. In this paper the implosion dynamics of a tungsten wire-array Z-pinch embedded with a CH foam converter, especially the impaction interaction of the wire-array plasma with the converter plasma, is numerically investigated using a one-dimensional non-equilibrium radiation magnetohydrodynamic code. In simulations the tungsten plasma is assumed as a plasma shell with a width of 1 mm, and the CH converter plasma is assumed to be uniform with an initial temperature of 0.1 eV. The overall implosion is driven by an assumed current with a peak value of 8 MA and a rise time of 66.4 ns. It is shown that a local high pressure region, which is generated by the impaction of the tungsten plasma with the converter plasma, is crucial to launch the strongly radiating shock wave and to form the dynamic hohlraum. Due to the supersonic radiation transfer in the low opacity CH converter plasma, which is also produced in the high pressure region, there exists a hohlraum region inside the front of the shock wave, in which the radiation is high. At the same time, the plasma pressure is uniform in this hohlraum region, so the plasma will not be disturbed before the shock arrives. As the shock propagates to the axis, the hohlraum becomes small and the radiation temperature is also increased. Basically, the hohlraum radiation is determined by the detailed profiles of plasma conditions when the wire-array plasma impacts onto the CH converter plasma. And these profiles are determined by many factors, such as the drive current, initial masses and radii of the wire-array and the converter, as well as the material of the converter. When the drive current is fixed, the optimal wire-array can be determined. Firstly, the mass ratio of the wire-array to the CH converter is varied. Numerical calculations show that as this ratio is decreased, the shock velocity is increased and the radiation temperature is increased as well. Additionally, the time duration of the radiation pulse before the shock arrives at the axis is remarkably increased. It is also found that when this mass ratio is slightly lower than unity, for example 0.75, a relative optimal dynamic hohlraum can be produced. Secondly, if the mass ratio is fixed and the initial radius of the converter is decreased, it is found that the shock velocity is just slightly changed. However, the peak hohlraum radiation temperature is increased and the radiation pulse becomes remarkably narrow. A suitable radius ratio of the wire-array to the converter, neither too large to induce strong Magneto-Rayleigh-Taylor (MRT) instability nor too small to gain a small kinetic energy of the wire-array before impacting onto the converter surface, should be selected. In the future we will develop two-dimensional code to investigate the effect of MRT instability on the formation of dynamic hohlraums.
      Corresponding author: Ding Ning, ding_ning@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105017, 11275030), and the Defense Industrial Technology Development Program(Contract No. B1520133015).
    [1]

    Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, L'Eplattenier P, Chandler G A, Seamen J F, Struve K W 1998 Phys. Rev. Lett. 81 4883

    [2]

    Jones M C, Ampleford D J, Cuneo M E, Hohlfelder R, Jennings C A, Johnson D W, Jones B, Lopez M R, MacArther J, Mills J A, Preston T, Rochau G A, Savage M, Spencer D, Sinars D B, Porter J L 2014 Rev. Sci. Instrum. 85 083501

    [3]

    Ryutov D D, Derzon M S, Matzen M K 2000 Rev. Mod. Phys. 72 167

    [4]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [5]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003

    [6]

    Cuneo M E, Vesey R A, Bennett G R, Sinars D B, Stygar W A, Waisman E M, Porter J L, Rambo P K, Smith I C, Lebedev S V, Chittenden J P, Bliss D E, Nash T J, Chandler G A, Afeyan B B, Yu E P, Campbell R B, Adams R G, Hanson D L, Mehlhorn T A, Matzen M K 2006 Plasma Phys. Control. Fusion 48 R1

    [7]

    Vesey R A, Hermann M C, Lemke R W, Desjarlais M P, Cuneo M E, Stygar W A, Bennett G R, Campbell R B, Christenson P J, Mehlhorn T A, Porter J L, Slutz S A 2007 Phys. Plasmas 14 056302

    [8]

    Bailey J E, Chandler G A, Slutz S A, Bennett G R, Cooper G, Lash J S, Lazier S, Lemke R, Nash T J, Nielsen D S, Moore T C, Ruiz C L, Schroen D G, Smelser R, Torres J, Vesey R A 2002 Phys. Rev. Lett. 89 095004

    [9]

    Bailey J E, Chandler G A, Mancini R C, Slutz S A, Rochau G A, Bump M, Buris-Mog T J, Cooper G, Dunham G, Golovkin I, Kilkenny J D, Lake P W, Leeper R J, Lemke R, MacFarlane J J, Mehlhorn T A, Moore T C, Nash T J, Nikroo A, Nielsen D S, Peterson K L, Ruiz C L, Schroen D G, Steinman D, Varnum W 2006 Phys. Plasmas 13 056301

    [10]

    Rochau G A, Bailey J E, Chandler G A, Cooper G, Dunham G S, Lake P W, Leeper R J, Lemke R W, Mehlhorn T A, Nikroo A, Peterson K J, Ruiz C L, Schroen D G, Slutz S A, Steinman D, Stygar W A, Varnum W 2007 Plasma Phys. Control. Fusion 49 B591

    [11]

    Slutz S A, Peterson K J, Vesey R A, Lemke R W, Bailey J E, Varnum W, Ruiz C L, Cooper G W, Chandler G A, Rochau G A, Mehlhorn T A 2006 Phys. Plasmas 13 102701

    [12]

    Smirnov V P, Zakharov S V, Grabovskii E V 2005 JETP Letters 81 442

    [13]

    Peng X J, Wang Z 2014 High Power Laser and Particle Beams 26 090201 (in Chinese) [彭先觉, 王真 2014 强激光与离子束 26 090201]

    [14]

    Chen F X, Feng J H, Li L B, Yang J L, Zhou L, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 045204 (in Chinese) [陈法新, 冯璟华, 李林波, 杨建伦, 周林, 徐荣昆, 徐泽平 2013 62 045204]

    [15]

    Jiang S Q, Ning J M, Chen F X, Ye F, Xue F B, Li L B, Yang J L, Chen J C, Zhou L, Qin Y, Li Z H, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 155203 (in Chinese) [蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平 2013 62 155203]

    [16]

    Xiao D L, Ding N, Ye F, Ning J M, Hu Q Y, Chen F X, Qin Y, Xu R K, Li Z H, Sun S K 2014 Phys. Plasmas 21 042704

    [17]

    Smirnov V P 1991 Plasma Phys. Control. Fusion 33 1697

    [18]

    Nash T J, Derzon M S, Allshouse G, Deeney C, Seaman J F, McGurn J, Jobe D, Gilliland T, McFarlane J J, Wang P, Petersen D L 1997 AIP Conference Proceedings 409, Vancouver, Canada, May 28-31, 1997, p175

    [19]

    Huang X B, Zhou S T, Ren X D, Dan J K, Wang K L, Zhang S Q, Li J, Xu Q, Cai H C, Duan S C, Ouyang K, Chen G H, Ji C, Wang M, Feng S P, Yang L B, Xie W P, Deng J J 2014 AIP Conference Proceedings 1639, Napa, CA, USA, August 3-7, 2014, p96

    [20]

    Xiao D L, Ning C, Lan K, Ding N 2010 Acta Phys. Sin. 59 430 (in Chinese) [肖德龙, 宁成, 蓝可, 丁宁 2010 59 430]

    [21]

    Xiao D L, Ding N, Xue C, Huang J, Zhang Y, Ning C, Sun S K 2013 Phys. Plasmas 20 013304

    [22]

    Slutz S A, Bailey J E, Chandler G A, Bennett G R, Cooper G, Lash J S, Lazier S, Lake P, Lemke R W, Mehlhorn T A, Nash T J, Nielson D S, McGurn J, Moore T C, Ruiz C L, Schroen D G, Torres J, Varnum W, Vesey R A 2003 Phys. Plasmas 10 1875

    [23]

    Chuvatin A S, Rudakov L I, Velikovich A L, Davis J, Oreshkin V I 2005 IEEE Trans. Plasma Sci. 33 739

    [24]

    Rochau G A, Bailey J E, Maron Y, Chandler G A, Dunham G S, Fisher D V, Fisher V I, Lemke R W, MacFarlane J J, Peterson K J, Schroen D G, Slutz S A, Stambulchik E 2008 Phys. Rev. Lett. 100 125004

    [25]

    Sanford T W L, Allshouse G O, Marder B M, Nash T J, Mock R C, Spielman R B, Seamen J F, McGurn J S, Jobe D, Gilliland T L, Vargas M, Struve K W, Stygar W A, Douglas M R, Matzen M K, Hammer J H, De Groot J S, Eddleman J L, Perterson D L, Mosher D, Whitney K G, Thornhill J W, Pulsifer P E, Apruzese J P, Maron Y 1996 Phys. Rev. Lett. 77 5063

    [26]

    Lemke R W, Bailey J E, Chandler G A, Nash T J, Slutz S A, Mehlhorn T A 2005 Phys. Plasmas 12 012703

  • [1]

    Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, L'Eplattenier P, Chandler G A, Seamen J F, Struve K W 1998 Phys. Rev. Lett. 81 4883

    [2]

    Jones M C, Ampleford D J, Cuneo M E, Hohlfelder R, Jennings C A, Johnson D W, Jones B, Lopez M R, MacArther J, Mills J A, Preston T, Rochau G A, Savage M, Spencer D, Sinars D B, Porter J L 2014 Rev. Sci. Instrum. 85 083501

    [3]

    Ryutov D D, Derzon M S, Matzen M K 2000 Rev. Mod. Phys. 72 167

    [4]

    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001

    [5]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003

    [6]

    Cuneo M E, Vesey R A, Bennett G R, Sinars D B, Stygar W A, Waisman E M, Porter J L, Rambo P K, Smith I C, Lebedev S V, Chittenden J P, Bliss D E, Nash T J, Chandler G A, Afeyan B B, Yu E P, Campbell R B, Adams R G, Hanson D L, Mehlhorn T A, Matzen M K 2006 Plasma Phys. Control. Fusion 48 R1

    [7]

    Vesey R A, Hermann M C, Lemke R W, Desjarlais M P, Cuneo M E, Stygar W A, Bennett G R, Campbell R B, Christenson P J, Mehlhorn T A, Porter J L, Slutz S A 2007 Phys. Plasmas 14 056302

    [8]

    Bailey J E, Chandler G A, Slutz S A, Bennett G R, Cooper G, Lash J S, Lazier S, Lemke R, Nash T J, Nielsen D S, Moore T C, Ruiz C L, Schroen D G, Smelser R, Torres J, Vesey R A 2002 Phys. Rev. Lett. 89 095004

    [9]

    Bailey J E, Chandler G A, Mancini R C, Slutz S A, Rochau G A, Bump M, Buris-Mog T J, Cooper G, Dunham G, Golovkin I, Kilkenny J D, Lake P W, Leeper R J, Lemke R, MacFarlane J J, Mehlhorn T A, Moore T C, Nash T J, Nikroo A, Nielsen D S, Peterson K L, Ruiz C L, Schroen D G, Steinman D, Varnum W 2006 Phys. Plasmas 13 056301

    [10]

    Rochau G A, Bailey J E, Chandler G A, Cooper G, Dunham G S, Lake P W, Leeper R J, Lemke R W, Mehlhorn T A, Nikroo A, Peterson K J, Ruiz C L, Schroen D G, Slutz S A, Steinman D, Stygar W A, Varnum W 2007 Plasma Phys. Control. Fusion 49 B591

    [11]

    Slutz S A, Peterson K J, Vesey R A, Lemke R W, Bailey J E, Varnum W, Ruiz C L, Cooper G W, Chandler G A, Rochau G A, Mehlhorn T A 2006 Phys. Plasmas 13 102701

    [12]

    Smirnov V P, Zakharov S V, Grabovskii E V 2005 JETP Letters 81 442

    [13]

    Peng X J, Wang Z 2014 High Power Laser and Particle Beams 26 090201 (in Chinese) [彭先觉, 王真 2014 强激光与离子束 26 090201]

    [14]

    Chen F X, Feng J H, Li L B, Yang J L, Zhou L, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 045204 (in Chinese) [陈法新, 冯璟华, 李林波, 杨建伦, 周林, 徐荣昆, 徐泽平 2013 62 045204]

    [15]

    Jiang S Q, Ning J M, Chen F X, Ye F, Xue F B, Li L B, Yang J L, Chen J C, Zhou L, Qin Y, Li Z H, Xu R K, Xu Z P 2013 Acta Phys. Sin. 62 155203 (in Chinese) [蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平 2013 62 155203]

    [16]

    Xiao D L, Ding N, Ye F, Ning J M, Hu Q Y, Chen F X, Qin Y, Xu R K, Li Z H, Sun S K 2014 Phys. Plasmas 21 042704

    [17]

    Smirnov V P 1991 Plasma Phys. Control. Fusion 33 1697

    [18]

    Nash T J, Derzon M S, Allshouse G, Deeney C, Seaman J F, McGurn J, Jobe D, Gilliland T, McFarlane J J, Wang P, Petersen D L 1997 AIP Conference Proceedings 409, Vancouver, Canada, May 28-31, 1997, p175

    [19]

    Huang X B, Zhou S T, Ren X D, Dan J K, Wang K L, Zhang S Q, Li J, Xu Q, Cai H C, Duan S C, Ouyang K, Chen G H, Ji C, Wang M, Feng S P, Yang L B, Xie W P, Deng J J 2014 AIP Conference Proceedings 1639, Napa, CA, USA, August 3-7, 2014, p96

    [20]

    Xiao D L, Ning C, Lan K, Ding N 2010 Acta Phys. Sin. 59 430 (in Chinese) [肖德龙, 宁成, 蓝可, 丁宁 2010 59 430]

    [21]

    Xiao D L, Ding N, Xue C, Huang J, Zhang Y, Ning C, Sun S K 2013 Phys. Plasmas 20 013304

    [22]

    Slutz S A, Bailey J E, Chandler G A, Bennett G R, Cooper G, Lash J S, Lazier S, Lake P, Lemke R W, Mehlhorn T A, Nash T J, Nielson D S, McGurn J, Moore T C, Ruiz C L, Schroen D G, Torres J, Varnum W, Vesey R A 2003 Phys. Plasmas 10 1875

    [23]

    Chuvatin A S, Rudakov L I, Velikovich A L, Davis J, Oreshkin V I 2005 IEEE Trans. Plasma Sci. 33 739

    [24]

    Rochau G A, Bailey J E, Maron Y, Chandler G A, Dunham G S, Fisher D V, Fisher V I, Lemke R W, MacFarlane J J, Peterson K J, Schroen D G, Slutz S A, Stambulchik E 2008 Phys. Rev. Lett. 100 125004

    [25]

    Sanford T W L, Allshouse G O, Marder B M, Nash T J, Mock R C, Spielman R B, Seamen J F, McGurn J S, Jobe D, Gilliland T L, Vargas M, Struve K W, Stygar W A, Douglas M R, Matzen M K, Hammer J H, De Groot J S, Eddleman J L, Perterson D L, Mosher D, Whitney K G, Thornhill J W, Pulsifer P E, Apruzese J P, Maron Y 1996 Phys. Rev. Lett. 77 5063

    [26]

    Lemke R W, Bailey J E, Chandler G A, Nash T J, Slutz S A, Mehlhorn T A 2005 Phys. Plasmas 12 012703

  • [1] Yuan Yong-Teng, Tu Shao-Yong, Yin Chuan-Sheng, Li Ji-Wei, Dai Zhen-Sheng, Yang Zheng-Hua, Hou Li-Fei, Zhan Xia-Yu, Yan Ji, Dong Yun-Song, Pu Yu-Dong, Zou Shi-Yang, Yang Jia-Min, Miao Wen-Yong. Understanding effects of radiation from radiative shock on Richtmyer-Meshkov instability. Acta Physica Sinica, 2021, 70(20): 205203. doi: 10.7498/aps.70.20210653
    [2] Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion. Acta Physica Sinica, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [3] Zhang Yang, Sun Shun-Kai, Ding Ning, Li Zheng-Hong, Shu Xiao-Jian. Basic dynamic and scale study of quasi-spherical Z-pinch implosion. Acta Physica Sinica, 2017, 66(10): 105203. doi: 10.7498/aps.66.105203
    [4] Wu Fu-Yuan, Chu Yan-Yun, Ye Fan, Li Zheng-Hong, Yang Jian-Lun, Rafael Ramis, Wang Zhen, Qi Jian-Min, Zhou Lin, Liang Chuan. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI. Acta Physica Sinica, 2017, 66(21): 215201. doi: 10.7498/aps.66.215201
    [5] Chen Zhong-Wang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z. Acta Physica Sinica, 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [6] Meng Shi-Jian, Huang Zhan-Chang, Ning Jia-Min, Hu Qing-Yuan, Ye Fan, Qin Yi, Xu Ze-Ping, Xu Rong-Kun. Shock X-ray emission image measurement in Z-pinch dynamic hohlraum. Acta Physica Sinica, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [7] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [8] Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping. Electromagnetic pulse emission produced by Z pinch implosions. Acta Physica Sinica, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [9] Jiang Shu-Qing, Ning Jia-Min, Chen Fa-Xin, Ye Fan, Xue Fei-Biao, Li Lin-Bo, Yang Jian-Lun, Chen Jin-Chuan, Zhou Lin, Qin Yi, Li Zheng-Hong, Xu Rong-Kun, Xu Ze-Ping. Preliminary experimental study on implosion dynamics and radiation character of Z-pinch dynamic hohlraum. Acta Physica Sinica, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [10] Chen Fa-Xin, Feng Jing-Hua, Li Lin-Bo, Yang Jian-Lun, Zhou Lin, Xu Rong-Kun, Xu Ze-Ping. Study of Z-pinch dynamic hohlraum shadowgraphy. Acta Physica Sinica, 2013, 62(4): 045204. doi: 10.7498/aps.62.045204
    [11] Sheng Liang, Qiu Meng-Tong, Hei Dong-Wei, Qiu Ai-Ci, Cong Pei-Tian, Wang Liang-Ping, Wei Fu-Li. Research of implosion dynamics for wire array Z pinch. Acta Physica Sinica, 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [12] Sheng Liang, Wang Liang-Ping, Li Yang, Peng Bo-Dong, Zhang Mei, Wu Jian, Wang Pei-Wei, Wei Fu-Li, Yuan Yuan. One-dimensional imaging diagnostics of imploding dynamics for planar wire array Z pinch. Acta Physica Sinica, 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [13] Zhang Fa-Qiang, Wang Zhen, Xu Ze-Ping, Jiang Shi-Lun, V. P. Smirnov, Ning Jia-Min, Li Lin-Bo, Zhou Xiu-Wen, E. V. Grabovsky, G. M. Oleynic, V. V. Alexandrov, Ding Ning, Xu Rong-Kun, Li Zheng-Hong, Yang Jian-Lun. New results of Sino-Russian joint Z-pinch experiments. Acta Physica Sinica, 2011, 60(4): 045208. doi: 10.7498/aps.60.045208
    [14] Ding Ning, Wu Ji-Ming, Dai Zi-Huan, Zhang Yang, Yin Li, Yao Yan-Zhong, Sun Shun-Kai, Ning Cheng, Shu Xiao-Jian. Numerical simulation analysis of Z-pinch implosion using MARED code. Acta Physica Sinica, 2010, 59(12): 8707-8716. doi: 10.7498/aps.59.8707
    [15] Xia Guang-Xin, Zhang Fa-Qiang, Xu Ze-Ping, Xu Rong-Kun, Chen Jin-Chuan, Ning Jia-Min. Radiation characteristics of single wire array Z-pinch implosion. Acta Physica Sinica, 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [16] Ding Ning, Zhang Yang, Liu Quan, Xiao De-Long, Shu Xiao-Jian, Ning Cheng. Effects of various inductances on the dynamic models of the Z-pinch implosion of nested wire arrays. Acta Physica Sinica, 2009, 58(2): 1083-1090. doi: 10.7498/aps.58.1083
    [17] Ren Xiao-Dong, Huang Xian-Bin, Zhou Shao-Tong, Zhang Si-Qun, Li Jing, Yang Li-Bing, Li Ping. Implosion characteristics of gas-puff Z-pinch with a single-shell nozzle. Acta Physica Sinica, 2009, 58(10): 7067-7073. doi: 10.7498/aps.58.7067
    [18] Huang Xian-Bin, Yang Li-Bing, Gu Yuan-Chao, Deng Jian-Jun, Zhou Rong-Guo, Zou Jie, Zhou Shao-Tong, Zhang Si-Qun, Chen Guang-Hua, Chang Li-Hua, Li Feng-Ping, Ouyang Kai, Li Jun, Yang Liang, Wang Xiong. Experimental studies of the argon-puff Z-pinch implosion process. Acta Physica Sinica, 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [19] Jiang Shao-En, Li Wen-Hong, Sun Ke-Xi, Jiang Xiao-Hua, Liu Yong-Gang, Cui Yan-Li, Chen Jiu-Sen, Ding Yong-Kun, Zheng Zhi-Jian. Shock wave driven by x-ray radiation from cylindrical hohlraum on Shenguang Ⅱlaser. Acta Physica Sinica, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [20] Ning Cheng, Yang Zhen-Hua, Ding Ning. Studies on the mechanism of energy transformation in implosion processes of the Z-pinches. Acta Physica Sinica, 2003, 52(2): 415-420. doi: 10.7498/aps.52.415
Metrics
  • Abstract views:  6226
  • PDF Downloads:  230
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2015
  • Accepted Date:  03 July 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map