搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于倏逝场耦合的石墨烯波导光传输相位特性仿真与实验研究

程杨 姚佰承 吴宇 王泽高 龚元 饶云江

引用本文:
Citation:

基于倏逝场耦合的石墨烯波导光传输相位特性仿真与实验研究

程杨, 姚佰承, 吴宇, 王泽高, 龚元, 饶云江

Simulation and experimental research of phase transmission features based on evanescent field coupled graphene waveguide

Cheng Yang, Yao Bai-Cheng, Wu Yu, Wang Ze-Gao, Gong Yuan, Rao Yun-Jiang
PDF
导出引用
  • 石墨烯材料应用到各种光波导器件中正成为新一代光子器件的重要发展方向之一,目前基于石墨烯的光纤和集成光子器件研究越来越受到国内外的重视. 本文建立了一种由微纳光纤耦合光倏逝场,并在石墨烯薄膜中传输的模型. 通过有限元分析法,研究了光在这种石墨烯波导中传输光场的强度分布和相位特性,并通过实验进行了验证. 结果表明,沿着微纳光纤-石墨烯光波导传播的倏逝场的强度分布和相位均受石墨烯材料作用,石墨烯材料能有效聚集和导行波导中传输的高阶模,在单位传输长度上具有更密集的等相位面. 本文提出了一种利用微纳光纤耦合光倏逝场研究石墨烯相位响应特性的新方法,对基于石墨烯波导的新型调制器、滤波器、激光器和传感器等光子器件的设计和应用具有一定的参考意义.
    The applications of graphene-based optical waveguide devices have been demonstrated to be one of the important directions of development for a new generation of photonic devices, and the research of graphene-based optical fiber and integrated photonic devices has attracted a great deal of attention at home and abroad. In this paper, a graphene planar optical waveguide is proposed which could transmit light by the evanescent field coupling with a microfiber. Finite element method is adopted to simulate the optical field intensity distribution and phase features of light propagating along graphene planar optical waveguide, and an experiment is performed to verify these features. Experimental results show that the transmission distribution and phases of the evanescent field are modulated by graphene obviously, it could effectively gather and transmit the high-order modes, exhibiting denser equal-phase faces on unit propagating length. In this work, we propose a new method in which the microfiber is adopted to investigate the transmission phase feature of graphene by evanescent wave coupling, which could be used as references for the design and application of graphene-based optical devices, such as modulator, filter, laser and sensor.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61107072,61107073)和国家自然科学基金重大项目(批准号:61290312)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61107072, 61107073), and the Major Program of the National Natural Science Foundation of China (Grant No. 61290312).
    [1]

    Geim A K, Novoselov K S 2007 Nature Materials 6 183

    [2]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [3]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photonics 6 749

    [4]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [5]

    Bao Q L, Zhang H, Wang B, Ni Z H, Haley C, Lim Y X, Wang Y, Tang D Y, Loh K P 2011 Nature Photonics 5 411

    [6]

    Feng D J, Han W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 62 054202]

    [7]

    Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 111110

    [8]

    Yao B C, Wu Y, Cheng Y, Liu X P, Gong Y, Rao Y J 2012 Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors Beijing, China, October 15–19, 2012 p8421CD

    [9]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 225 057701

    [10]

    Tong L M, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816

    [11]

    Vakil A, Engheta N 2011 Science 332 1291

    [12]

    Yao B C, Wu Y, Jia L, Rao Y J, Gong Y, Jiang C Y 2012 J. Opt. Am. B 29 891

    [13]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [14]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [15]

    Wang Z G, Chen Y F, Li P J, Hao X, Liu J B, Huang R, Li Y R 2011 ACS Nano 5 7149

    [16]

    He X Y, Liu Z B, Wang D N, Yang M W, Hu T Y, Tian J G 2013 IEEE Photonic. Tech. L 25 14

  • [1]

    Geim A K, Novoselov K S 2007 Nature Materials 6 183

    [2]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红 2012 61 248502]

    [3]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photonics 6 749

    [4]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [5]

    Bao Q L, Zhang H, Wang B, Ni Z H, Haley C, Lim Y X, Wang Y, Tang D Y, Loh K P 2011 Nature Photonics 5 411

    [6]

    Feng D J, Han W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 62 054202]

    [7]

    Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 111110

    [8]

    Yao B C, Wu Y, Cheng Y, Liu X P, Gong Y, Rao Y J 2012 Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors Beijing, China, October 15–19, 2012 p8421CD

    [9]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 225 057701

    [10]

    Tong L M, Gattass R R, Ashcom J B, He S, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816

    [11]

    Vakil A, Engheta N 2011 Science 332 1291

    [12]

    Yao B C, Wu Y, Jia L, Rao Y J, Gong Y, Jiang C Y 2012 J. Opt. Am. B 29 891

    [13]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [14]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [15]

    Wang Z G, Chen Y F, Li P J, Hao X, Liu J B, Huang R, Li Y R 2011 ACS Nano 5 7149

    [16]

    He X Y, Liu Z B, Wang D N, Yang M W, Hu T Y, Tian J G 2013 IEEE Photonic. Tech. L 25 14

  • [1] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究.  , 2024, 73(11): 114201. doi: 10.7498/aps.73.20240335
    [2] 凌进中, 郭金坤, 王昱程, 刘鑫, 王晓蕊. 基于倏逝波照明的空间移频超分辨成像技术研究.  , 2023, 72(22): 224202. doi: 10.7498/aps.72.20230934
    [3] 王明军, 王婉柔, 李勇俊. 利用平面声场对非均匀大气介质光波传输相位的调控.  , 2022, 71(16): 164302. doi: 10.7498/aps.71.20220484
    [4] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法.  , 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [5] 戚志明, 梁文耀. 表层厚度渐变一维耦合腔光子晶体的反射相位特性及其应用.  , 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [6] 李英, 胡艳军. 激光波长对纳米光纤俘获和输送聚苯乙烯微球的影响.  , 2014, 63(4): 048703. doi: 10.7498/aps.63.048703
    [7] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究.  , 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [8] 陈小艺, 刘曼, 李海霞, 张美娜, 宋洪胜, 滕树云, 程传福. 弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究.  , 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [9] 徐建亮, 汪敏, 潘慧, 刘晓辉, 戚晓利, 许四祥. 倾斜式测量系统的傅里叶变换轮廓术研究.  , 2011, 60(7): 074210. doi: 10.7498/aps.60.074210
    [10] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用.  , 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [11] 肖 瑞, 侯 静, 姜宗福. 光纤放大器阵列的远场特性研究.  , 2007, 56(8): 4550-4555. doi: 10.7498/aps.56.4550
    [12] 刘亚红, 罗春荣, 赵晓鹏. 同时实现介电常数和磁导率为负的H型结构单元左手材料.  , 2007, 56(10): 5883-5889. doi: 10.7498/aps.56.5883
    [13] 徐 敏, 张月蘅, 沈文忠. 半导体远红外反射镜中反射率和相位研究.  , 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [14] 陶卫东, 王 标. 一种改进型菲涅尔棱体的设计与分析.  , 2006, 55(3): 1126-1129. doi: 10.7498/aps.55.1126
    [15] 姚志欣, 潘佰良, 陈 钢, 钟建伟. 光子的态矢量函数.  , 2006, 55(5): 2158-2164. doi: 10.7498/aps.55.2158
    [16] 颜森林. 注入半导体激光器混沌调制性能与内部相位键控编码方法研究.  , 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [17] 颜森林. 光纤混沌相位编码保密通信系统理论研究.  , 2005, 54(5): 2000-2006. doi: 10.7498/aps.54.2000
    [18] 曹觉能, 郭 旗. 不同非局域程度条件下空间光孤子的传输特性.  , 2005, 54(8): 3688-3693. doi: 10.7498/aps.54.3688
    [19] 陈 龙, 何赛灵, 沈林放. 含负折射率介质的多层结构中倏逝波传播及隧道效应的分析.  , 2003, 52(10): 2386-2392. doi: 10.7498/aps.52.2386
    [20] 周天寿, 张锁春. 线性耦合Oregonator振子中的Echo波.  , 2001, 50(1): 8-12. doi: 10.7498/aps.50.8
计量
  • 文章访问数:  7771
  • PDF下载量:  2015
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-08-15
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map