-
An analytical model for double-layer shielding metallic enclosure with inner strip-shaped metallic plates is proposed for analyzing the shielding effectiveness of complex enclosures containing multiple spatial structures, based on the actual situation that the circuit systems in each spatial region are inevitably interfered by the electromagnetic penetration of those in adjacent spatial regions through slots, cables, and other transmission channels. The near-field electromagnetic interference of the external layer of the enclosure is represented by the equivalent electric dipoles, and the internal layer of it is regarded as the target point of shielding effectiveness, the analytical formulas of the internal layer's electromagnetic field then are derived based on Bethe's small aperture coupling theory and generalized Green's function. The model is employed to analyze the influences of some parameters of the strip-shaped metallic plate on the shielding effectiveness. It is shown that the position and direction of the strip-shaped metallic plate have obvious influence on the shielding effectiveness of the target point of the internal layer, embodied by the shielding values over some frequency ranges and different resonant modes, and at the same time the corresponding physical mechanisms are also given in detail. Comparison with the full wave simulation software CST has verified the model over a very broad frequency range, which provides a theoretical reference for the rapid calculation for shielding effectiveness of complex enclosures.
-
Keywords:
- Bethe's aperture coupling theory /
- Green's function /
- double layer enclosure /
- shielding effectiveness
[1] Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252
[2] Bethe H A 1944 Phys. Rev. 66 163
[3] Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Poster S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 40 240
[4] Nie B L, Du P A 2015 IEEE Trans. Electromagn. Compat. 57 357
[5] Kang W J, Lee V O, Mun S K, Chung Y S, Cheon C Y 2010 IEEE Antennas and Propagation Society International Symposium Toronto, Canada, July 11-17, 2010 pp1-4
[6] Xie H Y, Wang J G, Fan R Y, Liu Y N 2011 IEEE Trans. Electromagn. Compat. 53 185
[7] Liu E B, Du P A, Nie B L 2014 IEEE Trans. Electromagn. Compat. 56 589
[8] Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101
[9] Dehkoda P, Tavakoli A, Azadifar M 2012 IEEE Trans. Electromagn. Compat. 54 792
[10] Solin J R 2012 IEEE Trans. Electromagn. Compat. 54 188
[11] Hao C, Li D H 2014 Chinese Journal of Radio Science 29 114 (in Chinese) [郝翠, 李邓化 2014 电波科学学报 29 114]
[12] Liu B, Liu Q, Kan Y, Zhao X, Zhou H J, Yan L P 2015 High Power Laser and Particle Beams 27 053203 (in Chinese) [刘备, 刘强, 阚勇, 赵翔, 周海京, 闫丽萍 2015 强激光与粒子束 27 053203]
[13] Jiao C Q, Li Y Y 2014 Acta Phys. Sin. 63 214103 (in Chinese) [焦重庆, 李月月 2014 63 214103]
[14] Tesche F M, Ianoz M V, Karlsson T (translated by L Y H, Wang X Y) 2009 EMC Analysis Methods and Computational Models (Beijing: Beijing University of Posts and Telecommunications Press) p92 (in Chinese) [特奇F M, 艾诺茨M V, 卡尔松 T 著(吕英华, 王旭莹 译) 2009 EMC分析方法与计算模型 (北京: 北京邮电大学出版社) 第92页]
[15] Song H, Zhou D F, Hou D T, Hu T, Lin J Y 2008 High Power Laser and Particle Beams 20 1892 (in Chinese) [宋航, 周东方, 侯德亭, 胡涛, 林竞羽 2008 强激光与粒子束 20 1892]
[16] Rao Y P, Song H, Zhou D F 2008 High Power Laser and Particle Beams 20 1327 (in Chinese) [饶育萍, 宋航, 周东方 2008 强激光与粒子束 20 1327]
[17] Morse P M, Feshbach H 1953 Methods of Theoretical Physics (Vol. II) (New York: McGraw-Hill Press) pp1435-1440
-
[1] Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252
[2] Bethe H A 1944 Phys. Rev. 66 163
[3] Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Poster S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 40 240
[4] Nie B L, Du P A 2015 IEEE Trans. Electromagn. Compat. 57 357
[5] Kang W J, Lee V O, Mun S K, Chung Y S, Cheon C Y 2010 IEEE Antennas and Propagation Society International Symposium Toronto, Canada, July 11-17, 2010 pp1-4
[6] Xie H Y, Wang J G, Fan R Y, Liu Y N 2011 IEEE Trans. Electromagn. Compat. 53 185
[7] Liu E B, Du P A, Nie B L 2014 IEEE Trans. Electromagn. Compat. 56 589
[8] Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101
[9] Dehkoda P, Tavakoli A, Azadifar M 2012 IEEE Trans. Electromagn. Compat. 54 792
[10] Solin J R 2012 IEEE Trans. Electromagn. Compat. 54 188
[11] Hao C, Li D H 2014 Chinese Journal of Radio Science 29 114 (in Chinese) [郝翠, 李邓化 2014 电波科学学报 29 114]
[12] Liu B, Liu Q, Kan Y, Zhao X, Zhou H J, Yan L P 2015 High Power Laser and Particle Beams 27 053203 (in Chinese) [刘备, 刘强, 阚勇, 赵翔, 周海京, 闫丽萍 2015 强激光与粒子束 27 053203]
[13] Jiao C Q, Li Y Y 2014 Acta Phys. Sin. 63 214103 (in Chinese) [焦重庆, 李月月 2014 63 214103]
[14] Tesche F M, Ianoz M V, Karlsson T (translated by L Y H, Wang X Y) 2009 EMC Analysis Methods and Computational Models (Beijing: Beijing University of Posts and Telecommunications Press) p92 (in Chinese) [特奇F M, 艾诺茨M V, 卡尔松 T 著(吕英华, 王旭莹 译) 2009 EMC分析方法与计算模型 (北京: 北京邮电大学出版社) 第92页]
[15] Song H, Zhou D F, Hou D T, Hu T, Lin J Y 2008 High Power Laser and Particle Beams 20 1892 (in Chinese) [宋航, 周东方, 侯德亭, 胡涛, 林竞羽 2008 强激光与粒子束 20 1892]
[16] Rao Y P, Song H, Zhou D F 2008 High Power Laser and Particle Beams 20 1327 (in Chinese) [饶育萍, 宋航, 周东方 2008 强激光与粒子束 20 1327]
[17] Morse P M, Feshbach H 1953 Methods of Theoretical Physics (Vol. II) (New York: McGraw-Hill Press) pp1435-1440
Catalog
Metrics
- Abstract views: 6127
- PDF Downloads: 175
- Cited By: 0