搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属圆柱腔体中使用非均一背景增强微波断层成像

丁亮 刘培国 何建国 Amer Zakaria Joe LoVetri

引用本文:
Citation:

金属圆柱腔体中使用非均一背景增强微波断层成像

丁亮, 刘培国, 何建国, Amer Zakaria, Joe LoVetri

Enhancing microwave tomography in a circular metallic chamber by an inhomogeneous background

Ding Liang, Liu Pei-Guo, He Jian-Guo, Amer Zakaria, Joe LoVetri
PDF
导出引用
  • 针对基于圆柱金属腔体的微波断层成像系统,提出了一种利用非均一背景增强系统获取目标信息能力的方法. 该方法通过在腔体内放置已知物体构成非均一背景,这样不但能利用背景的先验信息,而且可以增加等效辐射源对目标进行探测. 首先,利用矩量法计算圆柱金属腔体内非均一背景的格林函数和离散积分算子,并对离散积分算子进行奇异值谱和条件数分析,在理论上证明该方法的可行性;然后,利用基于有限元的对比源逆成像法对均一背景、有耗非均一背景和无耗非均 一背景三种情况进行仿真研究;最后对仿真结果进行了误差分析和比较. 仿真结果表明,该方法可以提高反演收敛速度和结果准确度,有耗非均一背景略优于无耗非均一背景. 该方法可以在不改变硬件系统和算法的情况下得到更准确的反演结果,可应用于医学成像与工业无损探测.
    Microwave tomography is enhanced by using an inhomogeneous background. In this paper, the measurement region is located in a circular perfect electrical conductor (PEC) chamber where a known object is placed inside the imaging domain as an inhomogeneous background. This can not only make use of the prior information about the background, but also increase the equivalent radiation source for the target detection. The Green function of a circular PEC chamber with inhomogeneous background is obtained using the method of moments. Based on the Green functions for both homogeneous and inhomogeneous background in circular PEC chamber, the properties of the radiation operators are analyzed by comparing the condition numbers and the singular value spectra. Simulations are carried out in homogeneous, lossless inhomogeneous and lossy inhomogeneous backgrounds respectively, and the relative errors are discussed. The results show that using inhomogeneous background can improve the convergence rate and accuracy, and the lossy inhomogeneous background produces better results than the lossless one. In addition, it can enhance the inversion results without changing the microwave tomography system, which can be used in the medical imaging and industrial nondestructive detection.
    • 基金项目: 国家自然科学基金(批准号:61372029)和高等学校博士学科点专项科研基金(批准号:20114307110022)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372029) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114307110022).
    [1]

    Meaneya P M, Fanninga M W, Raynoldsa T, Foxa C J, Fang Q, Kogelb C A, Poplackb S P, Paulsena K D 2007 Acad. Radiol. 14 207

    [2]

    Zakaria A, Baran A, LoVetri J 2012 IEEE Antennas. Wirel. Propag. Lett. 11 1606

    [3]

    Song L P, Yu C, Liu Q H 2005 IEEE Trans. Geosci. Remote Sens. 43 2793

    [4]

    Abubakar A, Habashy T M, Druskin V L, Knizhnerman L, Alumbaugh D 2008 Geophysics 73 F165

    [5]

    Zhu H Y, Shen J Q, Li J 2004 Acta Phys. Sin. 53 947 (in Chinese) [朱红毅, 沈建其, 李军 2004 53 947]

    [6]

    Zhang P, Zhang X J 2013 Acta Phys. Sin. 62 164201 (in Chinese) [张鹏, 张晓娟 2013 62 164201]

    [7]

    Sheen D M, McMakin D L, Hall T E 2001 IEEE Trans. Microw. Theory Tech. 49 1581

    [8]

    Liu D, Wang F, Huang Q X, Yan J H, Chi Y, Cen K F 2008 Acta Phys. Sin. 57 4812 (in Chinese) [刘东, 王飞, 黄群星, 严建华, 池涌, 岑可法 2008 57 4812]

    [9]

    Ye H X, Jin Y Q 2009 Acta Phys. Sin. 58 4579 (in Chinese) [叶红霞, 金亚秋 2009 58 4579]

    [10]

    Gilmore C, Mojabi P, Zakaria A, Pistorius S, LoVetri J 2010 IEEE Antennas Wirel. Propag. Lett. 9 393

    [11]

    Ostadrahimi M, Mojabi P, Gilmore C, Zakaria A, Noghanian S, Pistorius S, LoVetri J 2011 IEEE Antennas Wirel. Propag. Lett. 10 900

    [12]

    Gilmore C, LoVetri J 2008 Inverse Probl. 24 035008

    [13]

    Gilmore C, Zakaria A, LoVetri J, Pistorius S 2013 Med. Phys. 40 023101

    [14]

    Nordeboa S, Fhagerb A, Gustafssonc M, Nilssona B 2010 Inverse Probl. Sci. En. 18 1043

    [15]

    Crocco L, Litman A 2009 Inverse Probl. 25 065001

    [16]

    Zakaria A, Gilmore C, LoVetri J 2010 Inverse Probl. 26 115010

    [17]

    van den Berg P M, Fokkema J T 2003 IEEE Trans. Microw. Theory Tech. 51 187

    [18]

    van den Berg P M, Kleinman R E 1997 Inverse Probl. 13 1607

    [19]

    Bucci O M, Crocco L, Isernia T 1999 J. Opt. Soc. Am. 16 1788

  • [1]

    Meaneya P M, Fanninga M W, Raynoldsa T, Foxa C J, Fang Q, Kogelb C A, Poplackb S P, Paulsena K D 2007 Acad. Radiol. 14 207

    [2]

    Zakaria A, Baran A, LoVetri J 2012 IEEE Antennas. Wirel. Propag. Lett. 11 1606

    [3]

    Song L P, Yu C, Liu Q H 2005 IEEE Trans. Geosci. Remote Sens. 43 2793

    [4]

    Abubakar A, Habashy T M, Druskin V L, Knizhnerman L, Alumbaugh D 2008 Geophysics 73 F165

    [5]

    Zhu H Y, Shen J Q, Li J 2004 Acta Phys. Sin. 53 947 (in Chinese) [朱红毅, 沈建其, 李军 2004 53 947]

    [6]

    Zhang P, Zhang X J 2013 Acta Phys. Sin. 62 164201 (in Chinese) [张鹏, 张晓娟 2013 62 164201]

    [7]

    Sheen D M, McMakin D L, Hall T E 2001 IEEE Trans. Microw. Theory Tech. 49 1581

    [8]

    Liu D, Wang F, Huang Q X, Yan J H, Chi Y, Cen K F 2008 Acta Phys. Sin. 57 4812 (in Chinese) [刘东, 王飞, 黄群星, 严建华, 池涌, 岑可法 2008 57 4812]

    [9]

    Ye H X, Jin Y Q 2009 Acta Phys. Sin. 58 4579 (in Chinese) [叶红霞, 金亚秋 2009 58 4579]

    [10]

    Gilmore C, Mojabi P, Zakaria A, Pistorius S, LoVetri J 2010 IEEE Antennas Wirel. Propag. Lett. 9 393

    [11]

    Ostadrahimi M, Mojabi P, Gilmore C, Zakaria A, Noghanian S, Pistorius S, LoVetri J 2011 IEEE Antennas Wirel. Propag. Lett. 10 900

    [12]

    Gilmore C, LoVetri J 2008 Inverse Probl. 24 035008

    [13]

    Gilmore C, Zakaria A, LoVetri J, Pistorius S 2013 Med. Phys. 40 023101

    [14]

    Nordeboa S, Fhagerb A, Gustafssonc M, Nilssona B 2010 Inverse Probl. Sci. En. 18 1043

    [15]

    Crocco L, Litman A 2009 Inverse Probl. 25 065001

    [16]

    Zakaria A, Gilmore C, LoVetri J 2010 Inverse Probl. 26 115010

    [17]

    van den Berg P M, Fokkema J T 2003 IEEE Trans. Microw. Theory Tech. 51 187

    [18]

    van den Berg P M, Kleinman R E 1997 Inverse Probl. 13 1607

    [19]

    Bucci O M, Crocco L, Isernia T 1999 J. Opt. Soc. Am. 16 1788

  • [1] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究.  , 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究.  , 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [3] 陈传升, 王秉中, 王任. 基于时间反演技术的电磁器件端口场与内部场转换方法.  , 2021, 70(7): 070201. doi: 10.7498/aps.70.20201682
    [4] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像.  , 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [5] 郝建红, 公延飞, 范杰清, 蒋璐行. 一种内置条状金属板的双层金属腔体屏蔽效能的理论模型.  , 2016, 65(4): 044101. doi: 10.7498/aps.65.044101
    [6] 陈碧云, 张业荣, 王磊, 王芳芳. 基于交替隐式有限差分法的快速早期乳腺癌时域微波断层成像.  , 2016, 65(14): 144101. doi: 10.7498/aps.65.144101
    [7] 段晓亮, 王一博, 杨慧珠. 基于逆散射理论的地震波速度正则化反演.  , 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [8] 张亚普, 达新宇, 祝杨坤, 赵蒙. 电大开孔箱体屏蔽效能分析解析模型.  , 2014, 63(23): 234101. doi: 10.7498/aps.63.234101
    [9] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析.  , 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [10] 丁亮, 刘培国, 何建国, Joe LoVetri. 一种金属腔体中微波断层成像的最优分层非均一背景.  , 2014, 63(18): 184102. doi: 10.7498/aps.63.184102
    [11] 李文峰, 杨洪耕, 肖先勇, 李兴源. 土壤模型对地表电位影响及合理选取土壤模型方法研究.  , 2013, 62(14): 144102. doi: 10.7498/aps.62.144102
    [12] 王芳芳, 张业荣. 基于支持向量机的电磁逆散射方法.  , 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [13] 张迷, 陈元平, 张再兰, 欧阳滔, 钟建新. 堆叠石墨片对锯齿型石墨纳米带电子输运的影响.  , 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [14] 刘广东, 张业荣. 二维有耗色散介质的时域逆散射方法.  , 2010, 59(10): 6969-6979. doi: 10.7498/aps.59.6969
    [15] 戴振宏, 倪 军. 基于格林函数的多终端量子链状体系电子输运性质的研究.  , 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
    [16] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算.  , 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
    [17] 赵学安, 何军辉. 微量子腔结边电荷极化结构中的线性和二阶非线性动态电导性质的研究.  , 2004, 53(4): 1201-1206. doi: 10.7498/aps.53.1201
    [18] 郭汝海, 时红艳, 孙秀冬. 用格林函数法计算量子点中的应变分布.  , 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
    [19] 曹天德, 黄清龙. 二分量高温超导机理.  , 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
    [20] 曹天德. 带间作用与超导转变温度.  , 2002, 51(5): 1118-1121. doi: 10.7498/aps.51.1118
计量
  • 文章访问数:  5646
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-25
  • 修回日期:  2013-10-17
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map