Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coherence length and magnetic penetration depth of the s-wave holographic superconductor model in Lifshitz spacetime

Yang Zhuo-Qun Wu Ya-Bo Lu Jun-Wang Zhang Cheng-Yuan Zhang Xue

Citation:

Coherence length and magnetic penetration depth of the s-wave holographic superconductor model in Lifshitz spacetime

Yang Zhuo-Qun, Wu Ya-Bo, Lu Jun-Wang, Zhang Cheng-Yuan, Zhang Xue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The AdS/CFT duality provides us a powerful guidance to study the strong-coupled conformal field theory by using its dual weak-coupled gravity. One of the interesting applications of the duality is to study high temperature superconductors, which are supposed to be a strongly coupled system. According to Ginzburg-Landau theory, a superconductor can be characterized by only two parameters, coherence length and the magnetic penetration length ; therefore, it is important to determine the two parameters. In this paper in the D=d+2-dimensional Lifshitz black hole, we analytically study the static fluctuation of the scalar field with nonzero spatial momentum along one spatial coordinate of the boundary, and investigate the perturbation of the gravitational system near the critical temperature Tc. Working in the probe limit (the gauge field and scalar field do not backreact on the original metric), we obtain the superconducting coherence length via AdS/CFT (anti-de Sitter/conformal field theory) correspondence, which is (1/Tc)(1-(T/Tc)-1/2. Moreover, in the probe limit (the magnetic field does not backreact to the background spacetime), we have calculated the diamagnetic current induced by a homogeneous external magnetic field perpendicular to the surface of the superconductor. Then, we obtain the magnetic penetration depth (Tc-T)-1/2, which agrees with the result in Ginzburg-Landau theory. And these results strongly support the idea that a superconductor can be described by a charged scalar field on the Lifshitz black hole via AdS/CFT (anti-de Sitter/conformal field theory) duality.
      Corresponding author: Wu Ya-Bo, ybwu61@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175077, 11575075).
    [1]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [2]

    Hawking S W 1975 Commun. Math. Phys. 43 199

    [3]

    Hooft G T 1993 arXiv:gr-qc/9310026

    [4]

    Susskind L 1995 J. Math. Phys. 36 6377

    [5]

    Maldacena J M 1999 Int. J. Theor. Phys. 38 1113

    [6]

    Witten E 1998 Adv. Theor. Math. Phys. 2 253

    [7]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105

    [8]

    Hartnoll S A, Herzog C P, Horowitz G T 2008 Phys. Rev. Lett. 101 031601

    [9]

    Maeda K, Okamura T 2008 Phys. Rev. D 78 106006

    [10]

    Gubser S S, Pufu S S 2008 J. High Energy Phys. 11 033

    [11]

    Cai R G, Li L, Li L F 2014 J. High Energy Phys. 01 032

    [12]

    Chen J W, Kao Y J, Maity D, Wen W Y, Yeh C P 2010 Phys. Rev. D 81 106008

    [13]

    Cai R G, He S, Li L, Li L F 2013 J. High Energy Phys. 12 036

    [14]

    Nie Z Y, Cai R G, Gao X, Zeng H 2013 J. High Energy Phys. 11 087

    [15]

    Horowitz G T, Roberts M M 2008 Phys. Rev. D 78 126008

    [16]

    Cai R G, Li L F, Wang Y Q 2013 J. High Energy Phys. 09 074

    [17]

    Cai R G, Nie Z Y and Zhang H Q 2010 Phys. Rev. D 82 066007

    [18]

    Ling Y, Niu C, Wu J P, Xian Z Y, Zhang H B 2014 Phys. Rev. Lett. 113 091602

    [19]

    Zeng X X, Liu X M, Liu W B 2014 J. High Energy Phys. 03 031

    [20]

    Wu Y B, Lu J W, Zhang C Y, Zhang N, Zhang X, Yang Z Q, Wu S Y 2015 Phys. Lett. B 741 138

    [21]

    Wu Y B, Lu J W, Liu M L, Lu J B, Zhang C Y, Yang Z Q 2014 Phys. Rev. D 89 106006

    [22]

    Nakonieczny L, Rogatko M 2014 Phys. Rev. D 90 106004

    [23]

    Nakonieczny L, Rogatko M, Wysokinski K 2015 Phys. Rev. D 92 066008

    [24]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 J. High Energy Phys. 04 092

    [25]

    Rogatko M, Wysokinski K 2015 arXiv:1510.06137[hep-th]

    [26]

    Chen S B, Pan Q Y, JIng J L 2012 Chin. Phys. B 21 040403

    [27]

    Peng Y, Deng F A, Liu G H, Yang K F 2015 Acta Phys. Sin. 64 157401 (in Chinese) [彭严, 邓方安, 刘国华, 杨凯凡 2015 64 157401]

    [28]

    Kachru S, Liu X, Mulligan M 2008 Phys. Rev. D 78 106005

    [29]

    Lu J W, Wu Y B, Qian P, Zhao Y Y, Zhang X, Zhang N 2014 Nucl. Phys. B 887 112

    [30]

    Taylor M 2008 arXiv:0812.0530[hep-th]

    [31]

    Pang D W 2014 Commun. Theor. Phys. 62 265

  • [1]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [2]

    Hawking S W 1975 Commun. Math. Phys. 43 199

    [3]

    Hooft G T 1993 arXiv:gr-qc/9310026

    [4]

    Susskind L 1995 J. Math. Phys. 36 6377

    [5]

    Maldacena J M 1999 Int. J. Theor. Phys. 38 1113

    [6]

    Witten E 1998 Adv. Theor. Math. Phys. 2 253

    [7]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105

    [8]

    Hartnoll S A, Herzog C P, Horowitz G T 2008 Phys. Rev. Lett. 101 031601

    [9]

    Maeda K, Okamura T 2008 Phys. Rev. D 78 106006

    [10]

    Gubser S S, Pufu S S 2008 J. High Energy Phys. 11 033

    [11]

    Cai R G, Li L, Li L F 2014 J. High Energy Phys. 01 032

    [12]

    Chen J W, Kao Y J, Maity D, Wen W Y, Yeh C P 2010 Phys. Rev. D 81 106008

    [13]

    Cai R G, He S, Li L, Li L F 2013 J. High Energy Phys. 12 036

    [14]

    Nie Z Y, Cai R G, Gao X, Zeng H 2013 J. High Energy Phys. 11 087

    [15]

    Horowitz G T, Roberts M M 2008 Phys. Rev. D 78 126008

    [16]

    Cai R G, Li L F, Wang Y Q 2013 J. High Energy Phys. 09 074

    [17]

    Cai R G, Nie Z Y and Zhang H Q 2010 Phys. Rev. D 82 066007

    [18]

    Ling Y, Niu C, Wu J P, Xian Z Y, Zhang H B 2014 Phys. Rev. Lett. 113 091602

    [19]

    Zeng X X, Liu X M, Liu W B 2014 J. High Energy Phys. 03 031

    [20]

    Wu Y B, Lu J W, Zhang C Y, Zhang N, Zhang X, Yang Z Q, Wu S Y 2015 Phys. Lett. B 741 138

    [21]

    Wu Y B, Lu J W, Liu M L, Lu J B, Zhang C Y, Yang Z Q 2014 Phys. Rev. D 89 106006

    [22]

    Nakonieczny L, Rogatko M 2014 Phys. Rev. D 90 106004

    [23]

    Nakonieczny L, Rogatko M, Wysokinski K 2015 Phys. Rev. D 92 066008

    [24]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 J. High Energy Phys. 04 092

    [25]

    Rogatko M, Wysokinski K 2015 arXiv:1510.06137[hep-th]

    [26]

    Chen S B, Pan Q Y, JIng J L 2012 Chin. Phys. B 21 040403

    [27]

    Peng Y, Deng F A, Liu G H, Yang K F 2015 Acta Phys. Sin. 64 157401 (in Chinese) [彭严, 邓方安, 刘国华, 杨凯凡 2015 64 157401]

    [28]

    Kachru S, Liu X, Mulligan M 2008 Phys. Rev. D 78 106005

    [29]

    Lu J W, Wu Y B, Qian P, Zhao Y Y, Zhang X, Zhang N 2014 Nucl. Phys. B 887 112

    [30]

    Taylor M 2008 arXiv:0812.0530[hep-th]

    [31]

    Pang D W 2014 Commun. Theor. Phys. 62 265

  • [1] Zhong Guo-Hua, Lin Hai-Qing. Aromatic superconductors: Electron-phonon coupling and electronic correlations. Acta Physica Sinica, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [2] Wang Yao, Jiang Lu, Zhou You-He, Xue Cun. Dependence of thermomagnetic instability on strong nonlinear E-J models in superconducting films. Acta Physica Sinica, 2022, 71(20): 207401. doi: 10.7498/aps.71.20220285
    [3] Zhang Ruo-Zhou, Qin Ming-Yang, Zhang Lu, You Li-Xing, Dong Chao, Sha Peng, Yuan Jie, Jin Kui. Measurement of magnetic penetration depth in superconducting films by two-coil mutual inductance technique. Acta Physica Sinica, 2020, 69(4): 047401. doi: 10.7498/aps.69.20191758
    [4] Chao Xing-Bing, Pan Lu-Ping, Wang Zi-Sheng, Yang Feng-Tao, Ding Jian-Ping. Influence of pixelation effect of image sensor on resolution of Fresnel incoherent correlation holography. Acta Physica Sinica, 2019, 68(6): 064203. doi: 10.7498/aps.68.20181844
    [5] Xu Hai-Chao, Niu Xiao-Hai, Ye Zi-Rong, Feng Dong-Lai. Unified phase diagram of Fe-based superconductors based on electron correlation strength. Acta Physica Sinica, 2018, 67(20): 207405. doi: 10.7498/aps.67.20181541
    [6] Chen Chuan-Ting, Yao Gang, Duan Ming-Chao, Guan Dan-Dan, Li Yao-Yi, Zheng Hao, Wang Shi-Yong, Liu Can-Hua, Jia Jin-Feng. In-situ measurement of diamagnetic response of potassium-adsorbed multi-layer FeSe ultrathin films on SrTiO3(001) substrate. Acta Physica Sinica, 2018, 67(22): 227401. doi: 10.7498/aps.67.20181522
    [7] Yu Rong. Electron correlations and orbital selectivities in multiorbital models for iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [8] Peng Yan, Deng Fang-An, Liu Guo-Hua, Yang Kai-Fan. A new Stckelberg holographic superconductor model. Acta Physica Sinica, 2015, 64(15): 157401. doi: 10.7498/aps.64.157401
    [9] He Ke-Jing, Zhang Jin-Cheng, Zhou Xiao-Qiang. Simulation of the projectile dynamics in granular media. Acta Physica Sinica, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [10] Lu Xiao-Ke, Guo Mao-Tian, Su Jian-Po, Gong Qiao-Xia, Wu Jin-Ke, Liu Jian-Li, Chen Ming, Ma Feng-Ying. Optical properties of terahertz dielectric microcavity. Acta Physica Sinica, 2013, 62(8): 084208. doi: 10.7498/aps.62.084208
    [11] Yang Jie, Yang Ping, Hou Wei, Zhang Da-Quan. A valid method to compute the segment size in detrended fluctuation analysis. Acta Physica Sinica, 2010, 59(12): 8986-8993. doi: 10.7498/aps.59.8986
    [12] Xie Zhi-Kun, Yu Guo-Xiang, Liu Cheng-Zhou. Holographic entropy of Gibbons-Maeda dilaton black hole. Acta Physica Sinica, 2010, 59(6): 4390-4394. doi: 10.7498/aps.59.4390
    [13] Zhao Ren, Zhang Li-Chun, Zhang Sheng-Li. Canonical entropy of black hole. Acta Physica Sinica, 2007, 56(7): 3719-3722. doi: 10.7498/aps.56.3719
    [14] Zhao Ren, Zhang Li-Chun, Hu Shuang-Qi. Statistical entropy of the black hole. Acta Physica Sinica, 2006, 55(8): 3902-3905. doi: 10.7498/aps.55.3902
    [15] Zhang Quan-Yi, Wu Yao-Yu, Peng Zheng, Liu Rui, Lu Kun-Quan, Hou Mei-Ying. The sinking depth of a projectile in granular media under gravity. Acta Physica Sinica, 2006, 55(12): 6203-6207. doi: 10.7498/aps.55.6203
    [16] Wang Shu-Fang, Jin B. B., Liu Zhen, Zhou Yue-Liang, Chen Zheng-Hao, Lü Hui-Bin, Cheng Bo-Lin, Yang Guo-Zhen. Microwave measurements of the MgB2 thin film. Acta Physica Sinica, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [17] Wang Rui-Feng, Zhao Shi-Peng, Xu Feng-Zhi, Chen Gang-Hua, Yang Han-Sheng. . Acta Physica Sinica, 2002, 51(4): 889-893. doi: 10.7498/aps.51.889
    [18] XIA JIAN-SHENO, CAO LIE-ZHAO, XU CHEN, WANG SHUN-XI, CHEN JIAN, CHEN ZU-YAO, ZHANG QI-RUI. THE RELATION BETWEEN SUPERCONDUCTIVITY AND STRUCTURE IN (Bi,Pb)4Ca3Sr3Cu4Oy SYSTEM. Acta Physica Sinica, 1989, 38(6): 1026-1029. doi: 10.7498/aps.38.1026
    [19] ZHAO YONG, ZHANG HAN, SUN SHI-FANG, SUN DUN-MING, YU DAO-QI, YU WEI-CHAO, CHEN ZU-YAO, ZHANG QI-RUI. THE RELATION OF SUPERCONDUCTIVITY AND STRUCTURE IN YBa2-xSrxCu3O7-δ. Acta Physica Sinica, 1988, 37(6): 1042-1047. doi: 10.7498/aps.37.1042
    [20] SHEN JUE-LIAN. ON THE THEORY OF SECOND ORDER PHASE TRANSITION AND AN EXPOSITION ON THE NON-VALIDITY OF LIFSHITZ CONDITION. Acta Physica Sinica, 1978, 27(1): 63-84. doi: 10.7498/aps.27.63
Metrics
  • Abstract views:  6524
  • PDF Downloads:  205
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2015
  • Accepted Date:  30 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map