Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new Stckelberg holographic superconductor model

Peng Yan Deng Fang-An Liu Guo-Hua Yang Kai-Fan

Citation:

A new Stckelberg holographic superconductor model

Peng Yan, Deng Fang-An, Liu Guo-Hua, Yang Kai-Fan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The AdS/CFT correspondence has provided us a useful approach to describe strongly interacting systems holographically through weakly coupled gravitational duals. One of the mostly studied gravity duals is the holographic superconductor, which is constructed by a scalar field coupled to a Maxwell field in an AdS black hole background. It is shown that when the Hawking temperature of a black hole drops below a critical value, the black hole becomes unstable and this instability in the (d+1) dimensional AdS black hole corresponds to a d-dimensional phase transition at the boundary, called holographic superconductor model. Generally speaking, the instability of the gravity systems belongs to the second-order phase transition. Lately, it was stated that the holographic superconductor with the spontaneous breaking of a global U(1) symmetry via the Stckelberg mechanism allows the first-order phase transition to occur. Some further studies are carried out by considering new forms of the Stckelberg mechanism. So it is very interesting to extend the discussion to other new forms of Stckelberg mechanism to explore the rich properties of holographic superconductors. By considering new higher correction terms of the scalar fields, we investigate a general class of holographic superconductors via Stckelberg mechanism in the background of four-dimensional AdS black hole. We obtain richer structures in the metal/superconductor phase transitions. We study the condensation of the scalar operator and find that when the model parameter is above a threshold value, this new model allows first-order phase transition to occur. We also examine the effects of the backreaction on the threshold model parameter and find that backreaction makes the first-order phase transitions easier to happen (or smaller threshold parameters above which the phase transition changes from second to first order). We may conclude that the model parameter coupled with the backreaction can determine the order of phase transitions.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11305097, 11301318), the education department of Shaanxi province of China (Grant No. 2013JK0616), and the Foundation of Shaaxi University of Technology of China (Grant No. SLGQD13-23).
    [1]

    Maldacena J, Adv 1998 Theor. Math. Phys. 2 231; 1999 Int. J. Theor. Phys. 38 1113

    [2]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105

    [3]

    Witten E, Adv 1998 Theor. Math. Phys. 2 253

    [4]

    Hartnoll S A 2009 Class. Quant. Grav. 26 224002

    [5]

    Herzog C P 2009 J. Phys. A 42 343001

    [6]

    Horowitz G T 2010 arXiv: 1002.1722 [hep-th]

    [7]

    Gubser S S 2008 Phys. Rev. D 78 065034

    [8]

    Gubser S S, Herzog C P, Pufu S S, Tesileanu T 2009 Phys. Rev. Lett. 103 141601

    [9]

    Liu Y Q, Pan Q Y, Wang B 2011 Phys. Lett. B 702 94

    [10]

    Gauntlett J P, Sonner J, Wiseman T 2009 Phys. Rev. Lett. 103 151601

    [11]

    Jing J L, Chen S B 2010 Phys. Lett. B 686 68

    [12]

    Pan Q Y, Wang B 2010 Phys. Lett. B 693 159

    [13]

    Nishioka T, Ryu S, Takayanagi T 2010 J. High Energy Phys. 03 131

    [14]

    Hartnoll S A, Herzog C P, Horowitz G T 2008 J. High Energy Phys. 12 015

    [15]

    Gregory R, Kanno S, Soda J 2009 J. High Energy Phys. 10 010

    [16]

    Pan Q Y, Wang B, Papantonopoulos E, Oliveria J, Pavan A B 2010 Phys. Rev. D 81 106007

    [17]

    Ge X H, Wang B, Wu S F, Yang G H 2010 J. High Energy Phys. 08 108

    [18]

    Horowitz G T, Way B 2010 J. High Energy Phys. 1011 011

    [19]

    Chen S B, Pan Q Y, Jing J L 2012 Chin. Phys. B 21 040403

    [20]

    Horowitz G T, Roberts M M 2008 Phys. Rev. D 78 126008

    [21]

    Cai R G, Zhang H Q 2010 Phys. Rev. D 81 066003

    [22]

    Jing J, Wang L, Chen S, arXiv:1001.1472

    [23]

    Setare M R, Momeni D 2011 J. High Energy Phys. 05 118

    [24]

    Ge X H, Wang B, Wu S F, Yang G H 2010 J. High Energy Phys. 1008 108

    [25]

    Maeda K, Natsuume M, Okamura T 2010 Phys. Rev. D 81 026002

    [26]

    Motull M, Pomarol A, Silva P J 2009 Phys. Rev. Lett. 103 091601

    [27]

    Albash T, johnson C V, 2009 Phys. Rev. D 80 126009

    [28]

    Brihaye Y, Hartmann B 2010 Phys. Rev. D 81 126008

    [29]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 J. High Energy Phys. 1004 092

    [30]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 Phys. Rev. D 81 041901

    [31]

    Peng Y, Pan Q Y 2013 Commun. Theor. Phys. 59 110

    [32]

    Yan P, Pan Q Y, Wang B 2011 Phys. Lett. B 699 383

    [33]

    Yan Peng, Pan Q Y 2014 J. High Energy Phys. 06 011

    [34]

    Cai R G, He S, Li L, Li L F 2012 J. High Energy Phys. 1210 107

    [35]

    Brihaye Y, Hartmann B 2011 Phys. Rev. D 83 126008

  • [1]

    Maldacena J, Adv 1998 Theor. Math. Phys. 2 231; 1999 Int. J. Theor. Phys. 38 1113

    [2]

    Gubser S S, Klebanov I R, Polyakov A M 1998 Phys. Lett. B 428 105

    [3]

    Witten E, Adv 1998 Theor. Math. Phys. 2 253

    [4]

    Hartnoll S A 2009 Class. Quant. Grav. 26 224002

    [5]

    Herzog C P 2009 J. Phys. A 42 343001

    [6]

    Horowitz G T 2010 arXiv: 1002.1722 [hep-th]

    [7]

    Gubser S S 2008 Phys. Rev. D 78 065034

    [8]

    Gubser S S, Herzog C P, Pufu S S, Tesileanu T 2009 Phys. Rev. Lett. 103 141601

    [9]

    Liu Y Q, Pan Q Y, Wang B 2011 Phys. Lett. B 702 94

    [10]

    Gauntlett J P, Sonner J, Wiseman T 2009 Phys. Rev. Lett. 103 151601

    [11]

    Jing J L, Chen S B 2010 Phys. Lett. B 686 68

    [12]

    Pan Q Y, Wang B 2010 Phys. Lett. B 693 159

    [13]

    Nishioka T, Ryu S, Takayanagi T 2010 J. High Energy Phys. 03 131

    [14]

    Hartnoll S A, Herzog C P, Horowitz G T 2008 J. High Energy Phys. 12 015

    [15]

    Gregory R, Kanno S, Soda J 2009 J. High Energy Phys. 10 010

    [16]

    Pan Q Y, Wang B, Papantonopoulos E, Oliveria J, Pavan A B 2010 Phys. Rev. D 81 106007

    [17]

    Ge X H, Wang B, Wu S F, Yang G H 2010 J. High Energy Phys. 08 108

    [18]

    Horowitz G T, Way B 2010 J. High Energy Phys. 1011 011

    [19]

    Chen S B, Pan Q Y, Jing J L 2012 Chin. Phys. B 21 040403

    [20]

    Horowitz G T, Roberts M M 2008 Phys. Rev. D 78 126008

    [21]

    Cai R G, Zhang H Q 2010 Phys. Rev. D 81 066003

    [22]

    Jing J, Wang L, Chen S, arXiv:1001.1472

    [23]

    Setare M R, Momeni D 2011 J. High Energy Phys. 05 118

    [24]

    Ge X H, Wang B, Wu S F, Yang G H 2010 J. High Energy Phys. 1008 108

    [25]

    Maeda K, Natsuume M, Okamura T 2010 Phys. Rev. D 81 026002

    [26]

    Motull M, Pomarol A, Silva P J 2009 Phys. Rev. Lett. 103 091601

    [27]

    Albash T, johnson C V, 2009 Phys. Rev. D 80 126009

    [28]

    Brihaye Y, Hartmann B 2010 Phys. Rev. D 81 126008

    [29]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 J. High Energy Phys. 1004 092

    [30]

    Franco S, Garcia-Garcia A M, Rodriguez-Gomez D 2010 Phys. Rev. D 81 041901

    [31]

    Peng Y, Pan Q Y 2013 Commun. Theor. Phys. 59 110

    [32]

    Yan P, Pan Q Y, Wang B 2011 Phys. Lett. B 699 383

    [33]

    Yan Peng, Pan Q Y 2014 J. High Energy Phys. 06 011

    [34]

    Cai R G, He S, Li L, Li L F 2012 J. High Energy Phys. 1210 107

    [35]

    Brihaye Y, Hartmann B 2011 Phys. Rev. D 83 126008

  • [1] Yang Zhuo-Qun, Wu Ya-Bo, Lu Jun-Wang, Zhang Cheng-Yuan, Zhang Xue. Coherence length and magnetic penetration depth of the s-wave holographic superconductor model in Lifshitz spacetime. Acta Physica Sinica, 2016, 65(4): 040401. doi: 10.7498/aps.65.040401
    [2] Pan Wei-Zhen, Yang Xue-Jun, Luo Jin-Cai. Hawking radiation of dynamical Kinnersley black hole under the new tortoise coordinate transformation. Acta Physica Sinica, 2011, 60(10): 109701. doi: 10.7498/aps.60.109701
    [3] Zou Bo-Xia, Yan Jun, Li Ji-Gen. Calculation of energy density fluctuations for Fermi matter on black hole background. Acta Physica Sinica, 2010, 59(11): 7602-7606. doi: 10.7498/aps.59.7602
    [4] Yang Bo. Entropy of the scalar field in general accelerating non-stationary black holes with electric charge and magnetic charge. Acta Physica Sinica, 2008, 57(4): 2614-2620. doi: 10.7498/aps.57.2614
    [5] Yang Bo. Hawking radiation of Dirac particles in a rectilinearly accelerating Kinnersley black hole. Acta Physica Sinica, 2008, 57(2): 1278-1284. doi: 10.7498/aps.57.1278
    [6] Han Yi-Wen, Hong Yun, Yang Shu-Zheng. The generalized uncertainty relation and Dirac field entropy of black hole with an internal global monopole. Acta Physica Sinica, 2007, 56(1): 10-14. doi: 10.7498/aps.56.10
    [7] Li Chuan-An, Su Jiu-Qing. The resonance model and quantum area spectrum of Kerr-Newman black hole. Acta Physica Sinica, 2006, 55(9): 4433-4436. doi: 10.7498/aps.55.4433
    [8] Cao Jiang-Ling. Hawking radiation of Dirac particles in an arbitrarily accelerating charged dynamic black hole. Acta Physica Sinica, 2006, 55(6): 2682-2686. doi: 10.7498/aps.55.2682
    [9] Zheng Yuan-Qiang. Entropy of Dirac field in a generalized non-stationary spherically symmetric black hole with charge. Acta Physica Sinica, 2006, 55(7): 3272-3276. doi: 10.7498/aps.55.3272
    [10] Liu Cheng-Zhou, Zhao Zheng. Entanglement entropy of the Gibbons-Maeda dilaton black hole. Acta Physica Sinica, 2006, 55(4): 1607-1615. doi: 10.7498/aps.55.1607
    [11] Han Yi-Wen. Using quantum tunneling method Hawking radiation of a static black hole horizon with a mass-quadrupole moment is studied. Acta Physica Sinica, 2005, 54(11): 5018-5021. doi: 10.7498/aps.54.5018
    [12] Niu Zhen-Feng, Liu Wen-Biao. A new Tortoise coordinate transformation and entropy of arbitrarily accelerating charged black hole. Acta Physica Sinica, 2005, 54(1): 475-480. doi: 10.7498/aps.54.475
    [13] Jiang Ji-Jian, Li Chuan-An. Quantum area spectrum of Kerr black hole and the smallest mass of micro-black hole. Acta Physica Sinica, 2005, 54(8): 3958-3961. doi: 10.7498/aps.54.3958
    [14] Sun Xue-Feng, Jing Ling, Liu Wen-Biao. Improvement and extension of the thin film brick wall model without cut-off. Acta Physica Sinica, 2004, 53(11): 4002-4006. doi: 10.7498/aps.53.4002
    [15] Meng Qing-Miao. Stefan-Boltzmann's law of the Dirac field of static spherically symmetric black holes. Acta Physica Sinica, 2003, 52(8): 2102-2104. doi: 10.7498/aps.52.2102
    [16] Li Chuan-An, Meng Qing-Miao, Su Jiu-Qing. . Acta Physica Sinica, 2002, 51(8): 1897-1900. doi: 10.7498/aps.51.1897
    [17] Song Tai-Peng, Hou Chen-Xia, Huang Jin-Shu. . Acta Physica Sinica, 2002, 51(8): 1901-1906. doi: 10.7498/aps.51.1901
    [18] Song Tai-Peng, Hou Chen-Xia, Shi Wang-Lin. . Acta Physica Sinica, 2002, 51(6): 1398-1402. doi: 10.7498/aps.51.1398
    [19] LI CHUAN-AN. THE PLANCK ABSOLUTE ENTRORY OF THE BLACK HOLE. Acta Physica Sinica, 2001, 50(5): 986-989. doi: 10.7498/aps.50.986
    [20] LI CHUAN-AN. THE EVENT HORIZON FORMULA OF BLACK HOLE. Acta Physica Sinica, 2000, 49(8): 1648-1651. doi: 10.7498/aps.49.1648
Metrics
  • Abstract views:  5596
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2014
  • Accepted Date:  02 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map