搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基超导体系基于电子关联强度的统一相图

徐海超 牛晓海 叶子荣 封东来

引用本文:
Citation:

铁基超导体系基于电子关联强度的统一相图

徐海超, 牛晓海, 叶子荣, 封东来

Unified phase diagram of Fe-based superconductors based on electron correlation strength

Xu Hai-Chao, Niu Xiao-Hai, Ye Zi-Rong, Feng Dong-Lai
PDF
导出引用
  • 铁基超导和铜基超导具有诸多相似性,这为建立统一的高温超导机理图像提供了可能性.然而,对铁基超导体系中无论是进行电荷掺杂、还是等价掺杂来改变化学压力,都能产生定性上类似、而细节上纷繁复杂的相图,这对建立统一的图像造成了困难.研究化学掺杂效应如何在微观上影响电子结构和超导电性,区分主导超导电性演化的主要因素和次要因素,对建立统一图像和揭示高温超导机理至关重要.本文综述了对铁基超导体系中化学掺杂效应的一系列角分辨光电子能谱研究,涵盖了基于FeAs和FeSe面的多种代表性铁基超导体系,包括异价掺杂、等价掺杂、在元胞不同位置的化学掺杂,及其对电子体系在费米面结构、杂质散射、电子关联强度等方面的影响.实验结果表明:电子关联性或能带宽度是多个铁基超导相图背后的普适参数,不同的晶格和杂质散射效应导致了并不重要的复杂细节,而费米面拓扑结构与超导电性的关联并不强.这些结果对弱耦合机理图像提出了挑战,并促使人们通过局域反铁磁交换作用配对图像在带宽演化层面上统一地理解铁基超导.
    The similarities between the Fe-based superconductors and cuprate superconductors imply a possible unified picture of high temperature superconductivity. However, various chemical doping effects in Fe-based superconductors can lead to qualitatively similar phase diagrams that show diverse and complicated details, which pose great challenges of establishing a unified picture. Studying how chemical doping affects the electronic structure and superconductivity, and finding the real universal control parameter for superconductivity, are very important for establishing a unified picture and revealing the mechanism of high temperature superconductivity. In this article, we review a series of angle resolved photoemission studies on the chemical doping effect in Fe-based superconductors, involving both type I Fe-based superconductors with both electron and hole Fermi pockets, and type Ⅱ Fe-based superconductors with only electron Fermi pockets, and involving chemical doping of hetero-valent doping, isovalent doping, and chemical doping at different sites in unit cell. Comprehensive studies and analysis are conducted from various aspects of doping effects, including Fermi surfaces, impurity scattering, and electron correlation, and their roles in evolving the superconductivity. Electron correlation is found to be a universal electronic parameter behind the diverse phase diagrams of Fe-based superconductors, which naturally explains the qualitatively similar phase diagrams of various Fe-base superconductors despite of doping them in different ways. The electron correlation in Fe-based superconductors is closely related to both the carrier type of dopant and the lattice structure parameters, such as bond length. The different impurity scattering effects and different structures may affect the optimal Tc and thus leading to the diversity and complexity in the phase diagram. Fermi surface topology and its evolution with doping may play a secondary role in determining Tc. In order to enhance the Tc, one needs to optimize a moderate electronic correlation while minimizing the impurity scattering in the Fe-anion layer. Our results explain many puzzles and controversies and provide a new view for understanding the phase diagrams, resistivity behaviors, superconducting properties, etc. Our findings also strongly challenge the weak coupling theories based on the Fermi surface nesting, but favors the strong-coupling pairing scenario, where the competition between the electron kinetic energy and the local correlation interactions is a driving parameter of superconducting phase diagram. Like the t-J model of cuprates, in the picture of local antiferromagnetic exchange pairing, superconductivity appears in Fe-based superconductor when the electron correlation strength is at a moderate level. If the correlation is too weak, the system cannot exhibit superconductivity and remains metallic at low temperature. If the correlation is too strong, magnetic order appears in type I Fe-based superconductor, while type Ⅱ Fe-based superconductor shows a bandwidth-control correlated insulating state. The control parameter of the phase diagram is carrier doping for cuprates, but electron correlation strength for Fe-based superconductors. Our experimental results give a unified understanding of iron-based superconductors as a bandwidth-controlled system.
      通信作者: 封东来, dlfeng@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11704073,11504342)和国家重点研发计划(批准号:2016YFA0300200,2017YFA0303004)资助的课题.
      Corresponding author: Feng Dong-Lai, dlfeng@fudan.edu.cn
    • Funds: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 11704073, 11504342) and the National Key Research and Development Plan of China (Grant Nos. 2016YFA0300200, 2017YFA0303004).
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Johnston D 2010 Adv. Phys. 59 803

    [4]

    Orenstein J, Millis A J 2000 Science 288 468

    [5]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [6]

    Medici L, Giovannetti G, Capone M 2014 Phys. Rev. Lett. 112 177001

    [7]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [8]

    Hu J P, Ding H 2012 Sci. Rep. 2 381

    [9]

    Pratt D K, Tian W, Kreyssig A, Zarestky J L, Nandi S, Ni N, Bud'ko S L, Canfield P C, Goldman A I, McQueeney R J 2009 Phys. Rev. Lett. 103 087001

    [10]

    Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q, Chen X H 2009 Europhys. Lett. 85 17006

    [11]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519

    [12]

    Ye Z R, Zhang Y, Chen F, Xu M, Ge Q Q, Jiang J, Xie B P, Feng D L 2012 Phys. Rev. B 86 035136

    [13]

    Eom M J, Na S W, Hoch C, Kremer R K, Kim J S 2012 Phys. Rev. B 85 024536

    [14]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [15]

    Liu T J, Hu J, Zhao B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Proke K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, Broholm C 2010 Nat. Mater. 9 718

    [16]

    Parker D R, Smith M J P, Lancaster T, Steele A J, Franke I, Baker P J, Pratt F L, Pitcher M J, Blundell S J, Clarke S J 2010 Phys. Rev. Lett. 104 057007

    [17]

    Pitcher M J, Lancaster T, Wright J D, Franke I, Steele A J, Baker P J, Pratt F L, Thomas W T, Parker D R, Blundell S J, Clarke S J 2010 J. Am. Chem. Soc. 132 10467

    [18]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [19]

    Iimura S, Matsuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M, Hosono H 2012 Nat. Commun. 3 943

    [20]

    Liu C, Palczewski A D, Dhaka R S, Kondo T, Fernandes R M, Mun E D, Hodovanets H, Thaler A N, Schmalian J, Bud'ko S L, Canfield P C, Kaminski A 2011 Phys. Rev. B 84 020509

    [21]

    Richard P, Sato T, Nakayama K, Takahashi T, Ding H 2011 Rep. Prog. Phys. 74 124512

    [22]

    Mazin I I, Schmalian J 2009 Physica C 469 614

    [23]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [24]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [25]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273

    [26]

    Tan S Y, Xia M, Zhang Y, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Juan J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [27]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [28]

    Fujita K, Noda T, Kojima K M, Eisaki H, Uchida S 2005 Phys. Rev. Lett. 95 097006

    [29]

    Kirshenbaum K, Saha S R, Ziemak S, Drye T, Paglione J 2012 Phys. Rev. B 86 140505

    [30]

    Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J, Mandrus D 2008 Phys. Rev. Lett. 101 117004

    [31]

    Wang Y, Kreisel A, Hirschfeld P J, Mishra V 2013 Phys. Rev. B 87 094504

    [32]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508

    [33]

    Lee C H, Iyo A, Eisaki H, Kito H, Fernandez-Diaz M T, Ito T, Kihou K, Matsuhata H, Braden M, Yamada K 2008 J. Phys. Soc. Jpn. 77 083704

    [34]

    Mizuguhci Y, Hara Y, Deguchi K, Tsuda S, Yamaguchi T, Takeda K, Kotegawa H, Tou H, Takano Y 2010 Supercond. Sci. Technol. 23 054013

    [35]

    Ye Z R, Zhang Y, Chen F, Xu M, Jiang J, Niu X H, Wen C H P, Xing L Y, Wang X C, Jin C Q, Xie B P, Feng D L 2014 Phys. Rev. X 4 031041

    [36]

    Niu X H, Chen S D, Jiang J, Ye Z R, Yu T L, Xu D F, Xu M, Feng Y, Yan Y J, Xie B P, Zhao J, Gu D C, Sun L L, Mao Q H, Wang H D, Fang M H, Zhang C J, Hu J P, Sun Z, Feng D L 2016 Phys. Rev. B 93 054516

    [37]

    Ye Z R, Zhang Y, Xie B P, Feng D L 2013 Chin. Phys. B 22 087407

    [38]

    Yi M, Zhang Y, Shen Z X, Lu D H 2017 npj Quantum Materials 2 57

    [39]

    Kondo J 1964 Prog. Theor. Phys. 32 37

    [40]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [41]

    Xu H C, Zhang Y, Xu M, Peng R, Shen X P, Strocov V N, Shi M, Kobayashi M, Schmitt T, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 087603

    [42]

    Vildosola V, Pourovskii L, Arita R, Biermann S, Georges A 2008 Phys. Rev. B 78 064518

    [43]

    Sharma S, Bharathi A, Vinod K, Sundar C S, Srihari V, Sen S, Ghosh H, Sinha A K, Deb S K 2015 Acta Cryst. B 71 61

    [44]

    Qian T, Wang X P, Jin W C, Zhang P, Richard P, Xu G, Dai X, Fang Z, Guo J G, Chen X L, Ding H 2011 Phys. Rev. Lett. 106 187001

    [45]

    Zhao L, Mou D, Liu S, Jia X, He J, Peng Y, Yu L, Liu X, Liu G, He S, Dong X, Zhang J, He J B, Wang D M, Chen G F, Guo J G, Chen X L, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. B 83 140508

    [46]

    Mou D, Liu S, Jia X, He J, Peng Y, Zhao L, Yu L, Liu G, He S, Dong X, Zhang J, Wang H, Dong C, Fang M, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. Lett. 106 107001

    [47]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [48]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [49]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2013 Nat. Mater. 12 15

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001

    [52]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044

    [53]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009

    [54]

    Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, Fang M H 2011 Europhys. Lett. 93 47004

    [55]

    Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P, Feng D L 2011 Phys. Rev. X 1 021020

    [56]

    Zhao J, Cao H, Bourret-Courchesne E, Lee D H, Birgeneau R J 2012 Phys. Rev. Lett. 109 267003

    [57]

    Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X, Li J Q 2011 Phys. Rev. B 83 140505

    [58]

    Gu D, Sun L, Wu Q, Zhang C, Guo J, Gao P, Wu Y, Dong X, Dai X, Zhao Z 2012 Phys. Rev. B 85 174523

    [59]

    Lei H C, Abeykoon M, Bozin E S, Wang K, Warren J B, Petrovic C 2011 Phys. Rev. Lett. 107 137002

    [60]

    Yi M, Lu D H, Yu R, Riggs S C, Chu J H, L B, Liu Z K, Lu M, Cui Y T, Hashimoto M, Mo S K, Hussain Z, Chu C W, Fisher I R, Si Q, Shen Z X 2013 Phys. Rev. Lett. 110 067003

    [61]

    Cai P, Ye C, Ruan W, Zhou X, Wang A, Zhang M, Chen X, Wang Y 2012 Phys. Rev. B 85 094512

    [62]

    Luttinger J M 1960 Phys. Rev. 119 1153

    [63]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [64]

    Zhu J X, Yu R, Wang H, Zhao L L, Jones M D, Dai J, Abrahams E, Morosan E, Fang M, Si Q 2010 Phys. Rev. Lett. 104 216405

    [65]

    Shein I R, Ivanovskii A L 2011 J. Supercond. Nov. Magn. 24 2215

    [66]

    Toulemonde P, Cottin D S, Lepoittevin C, Strobel P, Marcus J 2013 J. Phys.: Condens. Matter 25 075703

    [67]

    He J, Liu X, Zhang W, Zhao L, Liu D, He S, Mou D, Li F, Tang C, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [68]

    Fang Y, Xie D H, Zhang W, Chen F, Feng W, Xie B P, Feng D L, Lai X C, Tan S Y 2016 Phys. Rev. B 93 184503

    [69]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [70]

    Cao H Y, Chen S Y, Xiang H J, Gong X G 2015 Phys. Rev. B 91 020504

    [71]

    Yang H, Wang Z, Fang D, Li S, Kariyado T, Chen G, Ogata M, Das T, Balatsky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [72]

    Usui H, Kuroki K 2011 Phys. Rev. B 84 024505

    [73]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [74]

    Cui S T, Zhu S Y, Wang A F, Kong S, Ju S L, Luo X G, Chen X H, Zhang G B, Sun Z 2012 Phys. Rev. B 86 155143

    [75]

    Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508

    [76]

    Deng S, Khler J, Simon A 2009 Phys. Rev. B 80 214508

    [77]

    Yan X W, Gao M, Lu Z Y, Xiang T 2011 Phys. Rev. B 84 054502

    [78]

    Shen X P, Chen S D, Ge Q Q, Ye Z R, Chen F, Xu H C, Tan S Y, Niu X H, Fan Q, Xie B P, Feng D L 2013 Phys. Rev. B 88 115124

    [79]

    Tafti F F, Juneau-Fecteau A, Delage M E, Rene de Cotret S, Reid J Ph, Wang A F, Luo X G, Chen X H, Doiron-Leyraud N, Taillefer L 2013 Nat. Phys. 9 349

    [80]

    Saito T, Onari S, Kontani H 2010 Phys. Rev. B 82 144510

    [81]

    Seo K, Bernevig B A, Hu J 2008 Phys. Rev. Lett. 101 206404.

    [82]

    Shishido H, Bangura A F, Coldea A I, Tonegawa S, Hashimoto K, Kasahara S, Rourke P M C, Ikeda H, Terashima T, Settai R, Onuki Y, Vignolles D, Proust C, Vignolle B, McCollam A, Matsuda Y, Shibauchi T, Carrington A 2010 Phys. Rev. Lett. 104 057008

    [83]

    Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R, Shen Z X 2008 Nature 455 81

    [84]

    Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L, Wang N L 2009 Phys. Rev. B 79 140509

    [85]

    Li S, Cruz C, Huang Q, Chen Y, Lynn J W, Hu J, Huang Y L, Hsu F C, Yeh K W, Wu M K, Dai P 2009 Phys. Rev. B 79 054503

    [86]

    Yi M, Wang M, Kemper A F, Mo S K, Hussain Z, Bourret-Courchesne E, Lanzara A, Hashimoto M, Lu D H, Shen Z X, Birgeneau R J 2015 Phys. Rev. Lett. 115 256403

    [87]

    Fang C, Wu Y L, Thomale R, Bernevig B A, Hu J 2011 Phys. Rev. X 1 011009

    [88]

    Hu J P, Hao N N 2012 Phys. Rev. X 2 021009

    [89]

    Hu J P 2013 Phys. Rev. X 3 031004

    [90]

    Ma T X, Lin H Q, Hu J P 2013 Phys. Rev. Lett. 110 107002

    [91]

    Dai P, Hu J, Dagotto E 2012 Nat. Phys. 8 709

    [92]

    Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E A, Perring T G, Maier T A, Yin Z, Haule K, Kotliar G, Dai P 2013 Nat. Commun. 4 2874

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Johnston D 2010 Adv. Phys. 59 803

    [4]

    Orenstein J, Millis A J 2000 Science 288 468

    [5]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [6]

    Medici L, Giovannetti G, Capone M 2014 Phys. Rev. Lett. 112 177001

    [7]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [8]

    Hu J P, Ding H 2012 Sci. Rep. 2 381

    [9]

    Pratt D K, Tian W, Kreyssig A, Zarestky J L, Nandi S, Ni N, Bud'ko S L, Canfield P C, Goldman A I, McQueeney R J 2009 Phys. Rev. Lett. 103 087001

    [10]

    Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q, Chen X H 2009 Europhys. Lett. 85 17006

    [11]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519

    [12]

    Ye Z R, Zhang Y, Chen F, Xu M, Ge Q Q, Jiang J, Xie B P, Feng D L 2012 Phys. Rev. B 86 035136

    [13]

    Eom M J, Na S W, Hoch C, Kremer R K, Kim J S 2012 Phys. Rev. B 85 024536

    [14]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [15]

    Liu T J, Hu J, Zhao B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Proke K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, Broholm C 2010 Nat. Mater. 9 718

    [16]

    Parker D R, Smith M J P, Lancaster T, Steele A J, Franke I, Baker P J, Pratt F L, Pitcher M J, Blundell S J, Clarke S J 2010 Phys. Rev. Lett. 104 057007

    [17]

    Pitcher M J, Lancaster T, Wright J D, Franke I, Steele A J, Baker P J, Pratt F L, Thomas W T, Parker D R, Blundell S J, Clarke S J 2010 J. Am. Chem. Soc. 132 10467

    [18]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [19]

    Iimura S, Matsuishi S, Sato H, Hanna T, Muraba Y, Kim S W, Kim J E, Takata M, Hosono H 2012 Nat. Commun. 3 943

    [20]

    Liu C, Palczewski A D, Dhaka R S, Kondo T, Fernandes R M, Mun E D, Hodovanets H, Thaler A N, Schmalian J, Bud'ko S L, Canfield P C, Kaminski A 2011 Phys. Rev. B 84 020509

    [21]

    Richard P, Sato T, Nakayama K, Takahashi T, Ding H 2011 Rep. Prog. Phys. 74 124512

    [22]

    Mazin I I, Schmalian J 2009 Physica C 469 614

    [23]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [24]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [25]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273

    [26]

    Tan S Y, Xia M, Zhang Y, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Juan J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [27]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [28]

    Fujita K, Noda T, Kojima K M, Eisaki H, Uchida S 2005 Phys. Rev. Lett. 95 097006

    [29]

    Kirshenbaum K, Saha S R, Ziemak S, Drye T, Paglione J 2012 Phys. Rev. B 86 140505

    [30]

    Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J, Mandrus D 2008 Phys. Rev. Lett. 101 117004

    [31]

    Wang Y, Kreisel A, Hirschfeld P J, Mishra V 2013 Phys. Rev. B 87 094504

    [32]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508

    [33]

    Lee C H, Iyo A, Eisaki H, Kito H, Fernandez-Diaz M T, Ito T, Kihou K, Matsuhata H, Braden M, Yamada K 2008 J. Phys. Soc. Jpn. 77 083704

    [34]

    Mizuguhci Y, Hara Y, Deguchi K, Tsuda S, Yamaguchi T, Takeda K, Kotegawa H, Tou H, Takano Y 2010 Supercond. Sci. Technol. 23 054013

    [35]

    Ye Z R, Zhang Y, Chen F, Xu M, Jiang J, Niu X H, Wen C H P, Xing L Y, Wang X C, Jin C Q, Xie B P, Feng D L 2014 Phys. Rev. X 4 031041

    [36]

    Niu X H, Chen S D, Jiang J, Ye Z R, Yu T L, Xu D F, Xu M, Feng Y, Yan Y J, Xie B P, Zhao J, Gu D C, Sun L L, Mao Q H, Wang H D, Fang M H, Zhang C J, Hu J P, Sun Z, Feng D L 2016 Phys. Rev. B 93 054516

    [37]

    Ye Z R, Zhang Y, Xie B P, Feng D L 2013 Chin. Phys. B 22 087407

    [38]

    Yi M, Zhang Y, Shen Z X, Lu D H 2017 npj Quantum Materials 2 57

    [39]

    Kondo J 1964 Prog. Theor. Phys. 32 37

    [40]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [41]

    Xu H C, Zhang Y, Xu M, Peng R, Shen X P, Strocov V N, Shi M, Kobayashi M, Schmitt T, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 087603

    [42]

    Vildosola V, Pourovskii L, Arita R, Biermann S, Georges A 2008 Phys. Rev. B 78 064518

    [43]

    Sharma S, Bharathi A, Vinod K, Sundar C S, Srihari V, Sen S, Ghosh H, Sinha A K, Deb S K 2015 Acta Cryst. B 71 61

    [44]

    Qian T, Wang X P, Jin W C, Zhang P, Richard P, Xu G, Dai X, Fang Z, Guo J G, Chen X L, Ding H 2011 Phys. Rev. Lett. 106 187001

    [45]

    Zhao L, Mou D, Liu S, Jia X, He J, Peng Y, Yu L, Liu X, Liu G, He S, Dong X, Zhang J, He J B, Wang D M, Chen G F, Guo J G, Chen X L, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. B 83 140508

    [46]

    Mou D, Liu S, Jia X, He J, Peng Y, Zhao L, Yu L, Liu G, He S, Dong X, Zhang J, Wang H, Dong C, Fang M, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. Lett. 106 107001

    [47]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [48]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [49]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2013 Nat. Mater. 12 15

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001

    [52]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044

    [53]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009

    [54]

    Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, Fang M H 2011 Europhys. Lett. 93 47004

    [55]

    Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P, Feng D L 2011 Phys. Rev. X 1 021020

    [56]

    Zhao J, Cao H, Bourret-Courchesne E, Lee D H, Birgeneau R J 2012 Phys. Rev. Lett. 109 267003

    [57]

    Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X, Li J Q 2011 Phys. Rev. B 83 140505

    [58]

    Gu D, Sun L, Wu Q, Zhang C, Guo J, Gao P, Wu Y, Dong X, Dai X, Zhao Z 2012 Phys. Rev. B 85 174523

    [59]

    Lei H C, Abeykoon M, Bozin E S, Wang K, Warren J B, Petrovic C 2011 Phys. Rev. Lett. 107 137002

    [60]

    Yi M, Lu D H, Yu R, Riggs S C, Chu J H, L B, Liu Z K, Lu M, Cui Y T, Hashimoto M, Mo S K, Hussain Z, Chu C W, Fisher I R, Si Q, Shen Z X 2013 Phys. Rev. Lett. 110 067003

    [61]

    Cai P, Ye C, Ruan W, Zhou X, Wang A, Zhang M, Chen X, Wang Y 2012 Phys. Rev. B 85 094512

    [62]

    Luttinger J M 1960 Phys. Rev. 119 1153

    [63]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [64]

    Zhu J X, Yu R, Wang H, Zhao L L, Jones M D, Dai J, Abrahams E, Morosan E, Fang M, Si Q 2010 Phys. Rev. Lett. 104 216405

    [65]

    Shein I R, Ivanovskii A L 2011 J. Supercond. Nov. Magn. 24 2215

    [66]

    Toulemonde P, Cottin D S, Lepoittevin C, Strobel P, Marcus J 2013 J. Phys.: Condens. Matter 25 075703

    [67]

    He J, Liu X, Zhang W, Zhao L, Liu D, He S, Mou D, Li F, Tang C, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2014 Proc. Natl. Acad. Sci. USA 111 18501

    [68]

    Fang Y, Xie D H, Zhang W, Chen F, Feng W, Xie B P, Feng D L, Lai X C, Tan S Y 2016 Phys. Rev. B 93 184503

    [69]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [70]

    Cao H Y, Chen S Y, Xiang H J, Gong X G 2015 Phys. Rev. B 91 020504

    [71]

    Yang H, Wang Z, Fang D, Li S, Kariyado T, Chen G, Ogata M, Das T, Balatsky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [72]

    Usui H, Kuroki K 2011 Phys. Rev. B 84 024505

    [73]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [74]

    Cui S T, Zhu S Y, Wang A F, Kong S, Ju S L, Luo X G, Chen X H, Zhang G B, Sun Z 2012 Phys. Rev. B 86 155143

    [75]

    Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508

    [76]

    Deng S, Khler J, Simon A 2009 Phys. Rev. B 80 214508

    [77]

    Yan X W, Gao M, Lu Z Y, Xiang T 2011 Phys. Rev. B 84 054502

    [78]

    Shen X P, Chen S D, Ge Q Q, Ye Z R, Chen F, Xu H C, Tan S Y, Niu X H, Fan Q, Xie B P, Feng D L 2013 Phys. Rev. B 88 115124

    [79]

    Tafti F F, Juneau-Fecteau A, Delage M E, Rene de Cotret S, Reid J Ph, Wang A F, Luo X G, Chen X H, Doiron-Leyraud N, Taillefer L 2013 Nat. Phys. 9 349

    [80]

    Saito T, Onari S, Kontani H 2010 Phys. Rev. B 82 144510

    [81]

    Seo K, Bernevig B A, Hu J 2008 Phys. Rev. Lett. 101 206404.

    [82]

    Shishido H, Bangura A F, Coldea A I, Tonegawa S, Hashimoto K, Kasahara S, Rourke P M C, Ikeda H, Terashima T, Settai R, Onuki Y, Vignolles D, Proust C, Vignolle B, McCollam A, Matsuda Y, Shibauchi T, Carrington A 2010 Phys. Rev. Lett. 104 057008

    [83]

    Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R, Shen Z X 2008 Nature 455 81

    [84]

    Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L, Wang N L 2009 Phys. Rev. B 79 140509

    [85]

    Li S, Cruz C, Huang Q, Chen Y, Lynn J W, Hu J, Huang Y L, Hsu F C, Yeh K W, Wu M K, Dai P 2009 Phys. Rev. B 79 054503

    [86]

    Yi M, Wang M, Kemper A F, Mo S K, Hussain Z, Bourret-Courchesne E, Lanzara A, Hashimoto M, Lu D H, Shen Z X, Birgeneau R J 2015 Phys. Rev. Lett. 115 256403

    [87]

    Fang C, Wu Y L, Thomale R, Bernevig B A, Hu J 2011 Phys. Rev. X 1 011009

    [88]

    Hu J P, Hao N N 2012 Phys. Rev. X 2 021009

    [89]

    Hu J P 2013 Phys. Rev. X 3 031004

    [90]

    Ma T X, Lin H Q, Hu J P 2013 Phys. Rev. Lett. 110 107002

    [91]

    Dai P, Hu J, Dagotto E 2012 Nat. Phys. 8 709

    [92]

    Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E A, Perring T G, Maier T A, Yin Z, Haule K, Kotliar G, Dai P 2013 Nat. Commun. 4 2874

  • [1] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望.  , 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [2] 李春熠, 莫子夜, 鲁兴业. 铁基超导研究中的单轴应变调控方法.  , 2024, 73(19): 197103. doi: 10.7498/aps.73.20241080
    [3] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性.  , 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [4] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究.  , 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [5] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展.  , 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [6] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华. 三态K2分子飞秒含时光电子能谱的理论研究.  , 2015, 64(14): 143303. doi: 10.7498/aps.64.143303
    [7] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究.  , 2014, 63(2): 023302. doi: 10.7498/aps.63.023302
    [8] 胡峰, 杨家敏, 王传珂, 张继彦, 蒋刚, 朱正和. 电子关联效应对金离子的影响.  , 2011, 60(10): 103104. doi: 10.7498/aps.60.103104.1
    [9] 刘延君, 董晨钟, 蒋军, 颉录有. 电子与类铍N3+和O4+离子碰撞激发截面的相对论扭曲波计算.  , 2009, 58(4): 2320-2327. doi: 10.7498/aps.58.2320
    [10] 张书锋, 邓景康, 黄艳茹, 刘昆, 宁传刚. N2价轨道的精细电子动量谱学研究.  , 2009, 58(4): 2382-2389. doi: 10.7498/aps.58.2382
    [11] 朱婧晶, 苟秉聪. 类氦离子高双激发态电子关联效应的研究.  , 2009, 58(8): 5285-5290. doi: 10.7498/aps.58.5285
    [12] 吴海飞, 张寒洁, 廖清, 陆赟豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模. Mn/PbTe(111)界面行为的光电子能谱研究.  , 2009, 58(2): 1310-1315. doi: 10.7498/aps.58.1310
    [13] 张文华, 莫 雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪 茫. 苯并咪唑苝与金属Ag的界面电子结构研究.  , 2007, 56(8): 4936-4942. doi: 10.7498/aps.56.4936
    [14] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认.  , 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [15] 苏国林, 任雪光, 张书锋, 宁传刚, 周 晖, 李 彬, 黄 峰, 李桂琴, 邓景康. 环戊烯分子内价轨道1a′的电子动量谱学研究.  , 2005, 54(9): 4108-4112. doi: 10.7498/aps.54.4108
    [16] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布.  , 2005, 54(6): 2653-2661. doi: 10.7498/aps.54.2653
    [17] 贾文红, 武海顺. GamPn和GamP-n团簇结构及其光电子能谱的理论研究.  , 2004, 53(4): 1056-1062. doi: 10.7498/aps.53.1056
    [18] 崔大复, 王焕华, 戴守愚, 周岳亮, 陈正豪, 杨国桢, 刘凤琴, 奎热西, 钱海杰. Sb掺杂SrTio3透明导电薄膜的光电子能谱研究.  , 2002, 51(1): 187-191. doi: 10.7498/aps.51.187
    [19] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁. OPCOT在Ru(0001)表面上的紫外光电子能谱研究.  , 2002, 51(11): 2644-2648. doi: 10.7498/aps.51.2644
    [20] 李 旗, 潘海斌, 祝传刚, 徐彭寿, 周映雪, 张新夷. Bi2Sr2CaCu2-xSnxO8+δ系列 超导体的XRD和XPS研究.  , 2000, 49(10): 2055-2058. doi: 10.7498/aps.49.2055
计量
  • 文章访问数:  6590
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-16
  • 修回日期:  2018-09-05
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map