-
Wireless sensor network (WSN) is a basic component of internet and it plays an important role in many application areas, such as military surveillance, environmental monitoring and medical treatment. Node localization is one of the interesting issues in the field of WSN. Now, most of the existing node localization algorithms can be divided into two categories. One is range-based measurement and the other is range-free measurement. The localization algorithm of range-based measurement can achieve better location accuracy than the localization algorithm of range-free measurement. However, they are generally very energy consuming. Therefore, the range-free measurements are most widely used in practical applications. According to the application of localization algorithm in WSN by range-free measurements, an improved centroid localization algorithm based on iterative computation for wireless sensor network is proposed. In this algorithm, the position relationship of the closed area surrounded by the anchor nodes inside the unknown node's communication range and the unknown node is obtained by approximate point-in-triangulation test at first. Different position relationships determine different stopping criteria for iteration. Then, the centroid coordinates of the closed area surrounded by the anchor nodes inside the unknown node's communication range and the received signal strength (RSSI) between the centroid node and the unknown node are calculated. The anchor node with the weakest RSSI would be replaced by the centroid node. By this method, the closed area surrounded by the anchor nodes inside the unknown node's communication range is reduced. The location accuracy is increased by the cyclic iterative method. With the change of the anchor node ratio, the communication radius of the unknown node and the effect of RSSI error, the algorithm performance is investigated by using simulated data. The simulation results validate that although the improved centroid localization algorithm performance will be lost when the number of the anchor nodes inside the unknown node communication range decreases, the new approach can achieve good performance under the condition of few anchor nodes inside the unknown node communication range and this method is of strong robusticity against RSSI error disturbance.
-
Keywords:
- wireless sensor network /
- node self-localization /
- range-free /
- centroid localization
[1] Liu W R, He Y 2013 EPC System Network and Wireless Sensor Networks (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [刘伟荣, 何云 2013 物联网与无线传感器(北京: 电子工业出版社) 第141页]
[2] Peng H X, Zhao H, Li D Z, Lin C 2014 Acta Phys. Sin. 63 090206 (in Chinese) [彭海霞, 赵海, 李大舟, 林川 2014 63 090206]
[3] Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101
[4] Yaghoubi F, Abbasfar A A, Maham B 2014 IEEE Commun. Lett. 18 973
[5] Sahu P K, Wu E H K, Sahoo J 2013 IEEE Sens. J. 13 3115
[6] Yu K, Guo Y J, Hedley M 2009 IET Signal Process. 3 106
[7] Xu E, Ding Z, Dasgupta S 2011 IEEE Trans. Signal Process. 59 2887
[8] Bandiera F, Coluccia A, Ricci G, Ricciato F, Spano D 2014 12th IEEE International Conference on Embedded and Ubiquitous Computing (EUC) Milano, Italy, August 26-28, 2014 p193
[9] Sun D Y, Qian Z H, Han M F, Wang X 2014 Acta Electron. Sin. 42 1601 (in Chinese) [孙大洋, 钱志鸿, 韩梦飞, 王雪 2014 电子学报 42 1601]
[10] Tomic S, Beko M, Dinis R 2015 IEEE Trans. Vehicular Technol. 64 2037
[11] Hao X C, Liu W J, Xin M J, Yao N, Ru X Y 2015 Acta Phys. Sin. 64 080101 (in Chinese) [郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月 2015 64 080101]
[12] Liu H R, Yin W X, Han T, Dong M R 2014 Acta Phys. Sin. 63 040509 (in Chinese) [刘浩然, 尹文晓, 韩涛, 董明如 2014 63 040509]
[13] Bulusu N, Heidemann J, Estrin D 2000 IEEE Personal Commun. 7 28
[14] Zhou Y, Ao X, Xia S X 2008 7th World Congress on Intelligent Contral and Automation (WCICA) Chongqing, China, May 25-27, 2008 p193
[15] Yu F, Wang Q, Zhang X T, Li C 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM) Dalian, China, October 13-21, 2008 p1
[16] Wang J Z, Jin H X 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC) Wuhan, China, April 25-26, 2009 p719
[17] Hadir A, Zine D K, Bakhouya M, Ei K J 2014 5th Workshop on Code, Cryptography and Communication Systems (WCCCS) EI-Jadida, Morocco, November 27-28, 2014 p25
[18] Xiang J. Tan W W 2013 IEEE International Workshop on Electromagnetics (iWEM) Hong Kong, China, August 1-3, 2013 p171
[19] Doherty L, Pister K S J, Ei G L 2001 2001 Proc of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies Alaska, USA, April 22-26, 2001 p1655
[20] Meng Y H, Wen Y Y, Chen J, Zhao H 2014 Acta Electron. Sin. 42 1712 (in Chinese) [孟颍辉, 闻英友, 陈剑, 赵宏 2014 电子学报 42 1712]
[21] Maddumabandara A, Leung H, Liu M X 2015 IEEE Sensors J. 15 5228
-
[1] Liu W R, He Y 2013 EPC System Network and Wireless Sensor Networks (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [刘伟荣, 何云 2013 物联网与无线传感器(北京: 电子工业出版社) 第141页]
[2] Peng H X, Zhao H, Li D Z, Lin C 2014 Acta Phys. Sin. 63 090206 (in Chinese) [彭海霞, 赵海, 李大舟, 林川 2014 63 090206]
[3] Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101
[4] Yaghoubi F, Abbasfar A A, Maham B 2014 IEEE Commun. Lett. 18 973
[5] Sahu P K, Wu E H K, Sahoo J 2013 IEEE Sens. J. 13 3115
[6] Yu K, Guo Y J, Hedley M 2009 IET Signal Process. 3 106
[7] Xu E, Ding Z, Dasgupta S 2011 IEEE Trans. Signal Process. 59 2887
[8] Bandiera F, Coluccia A, Ricci G, Ricciato F, Spano D 2014 12th IEEE International Conference on Embedded and Ubiquitous Computing (EUC) Milano, Italy, August 26-28, 2014 p193
[9] Sun D Y, Qian Z H, Han M F, Wang X 2014 Acta Electron. Sin. 42 1601 (in Chinese) [孙大洋, 钱志鸿, 韩梦飞, 王雪 2014 电子学报 42 1601]
[10] Tomic S, Beko M, Dinis R 2015 IEEE Trans. Vehicular Technol. 64 2037
[11] Hao X C, Liu W J, Xin M J, Yao N, Ru X Y 2015 Acta Phys. Sin. 64 080101 (in Chinese) [郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月 2015 64 080101]
[12] Liu H R, Yin W X, Han T, Dong M R 2014 Acta Phys. Sin. 63 040509 (in Chinese) [刘浩然, 尹文晓, 韩涛, 董明如 2014 63 040509]
[13] Bulusu N, Heidemann J, Estrin D 2000 IEEE Personal Commun. 7 28
[14] Zhou Y, Ao X, Xia S X 2008 7th World Congress on Intelligent Contral and Automation (WCICA) Chongqing, China, May 25-27, 2008 p193
[15] Yu F, Wang Q, Zhang X T, Li C 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM) Dalian, China, October 13-21, 2008 p1
[16] Wang J Z, Jin H X 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC) Wuhan, China, April 25-26, 2009 p719
[17] Hadir A, Zine D K, Bakhouya M, Ei K J 2014 5th Workshop on Code, Cryptography and Communication Systems (WCCCS) EI-Jadida, Morocco, November 27-28, 2014 p25
[18] Xiang J. Tan W W 2013 IEEE International Workshop on Electromagnetics (iWEM) Hong Kong, China, August 1-3, 2013 p171
[19] Doherty L, Pister K S J, Ei G L 2001 2001 Proc of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies Alaska, USA, April 22-26, 2001 p1655
[20] Meng Y H, Wen Y Y, Chen J, Zhao H 2014 Acta Electron. Sin. 42 1712 (in Chinese) [孟颍辉, 闻英友, 陈剑, 赵宏 2014 电子学报 42 1712]
[21] Maddumabandara A, Leung H, Liu M X 2015 IEEE Sensors J. 15 5228
Catalog
Metrics
- Abstract views: 8619
- PDF Downloads: 508
- Cited By: 0