搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种无线传感器网络健壮性可调的能量均衡拓扑控制算法

郝晓辰 刘伟静 辛敏洁 姚宁 汝小月

引用本文:
Citation:

一种无线传感器网络健壮性可调的能量均衡拓扑控制算法

郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月

Energy balance and robustness adjustable topology control algorithm for wireless sensor networks

Hao Xiao-Chen, Liu Wei-Jing, Xin Min-Jie, Yao Ning, Ru Xiao-Yue
PDF
导出引用
  • 无线传感器网络中, 应用环境的干扰导致节点间距不能被准确度量. 所以利用以节点间距作为权重的闭包图(EG)模型构建的拓扑没有考虑环境的干扰, 忽略了这部分干扰带来的能耗, 缩短了网络生存时间. 针对无线传感器网络拓扑能量不均的特点和EG模型的缺陷, 首先引入节点度调节因子, 建立通信度量模型和节点实际生存时间模型; 其次量化网络节点度, 从而获取满足能量均衡和网络生命期最大化需求的节点度的取值规律; 然后利用该取值规律和函数极值充分条件解析推导出网络最大能量消耗值和最长生存时间, 并获得最优节点度; 最后基于以上模型提出一种健壮性可调的能量均衡拓扑控制算法. 理论证明该拓扑连通且为双向连通. 仿真结果说明网络能利用最优节点度达到较高的健壮性, 保证信息可靠传输, 且算法能有效平衡节点能耗, 提高网络健壮性, 延长网络生命周期.
    In wireless sensor networks, the interference around the application environment may cause the actual distance between any pair of nodes to fail to be measured accurately. Enclosure graph (EG) model uses this distance between nodes as its weight to construct the topology, which does not fully consider the interference. Consequently it will lead to a large amount of energy consumption induced by the application environment. Even it shortens the survival time. According to the feature of network energy inequality in a wireless sensor network and the defect of EG, we first introduce the adjustable factor of node degree, establish a model of communication metric and a model for the node actual survival time. Then according to the demand of network energy equalization and maximum network lifetime, we quantitatively analyze the network node degree, and achieve its regular pattern. In accordance with this regular pattern and sufficient conditions of function extremum, the maximum node energy consumption and the maximum node actual survival time are deduced. And the corresponding optimal node degree is achieved. Finally, according to the above model, in this paper we propose an energy balance and robustness adjustable topology control algorithm for wireless sensor networks. Theoretical analyses show that this algorithm can guarantee that the network is connected and the link of the network is bi-directionally connected. Experiments show that the network takes advantage of this optimal node degree to obtain the high robustness, thus guaranteeing that the information can be transferred unfailingly. This algorithm can effectively balance the node energy, improve the node survival time, enhance the network robustness, and prolong the network's lifetime.
    • 基金项目: 国家自然科学基金(批准号: 61403336)、中国博士后科学基金(批准号: 2012M520596)和燕山大学青年教师自主研究计划课题A类(编号: 13LGA008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61403336), the China Postdoctoral Science Foundation (Grant No. 2012M520596), and the Independent Research Project Topics A Category for Young Teacher of Yanshan University, China (Grant No. 13LGA008).
    [1]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [2]

    Wang Y Q, Yang X Y 2013 Chin. Phys. B 22 040206

    [3]

    Tong X J, Zuo K, Wang Z 2012 Acta Phys. Sin. 61 030502 (in Chinese) [佟晓筠, 左科, 王翥 2012 61 030502]

    [4]

    Huang J W, Feng J C, L S X 2014 Acta Phys. Sin. 63 050502 (in Chinese) [黄锦旺, 冯久超, 吕善翔 2014 63 050502]

    [5]

    Naincy J, Abhishek M 2014 Int. J. Innov. Adv. Computer Sci. 3 19

    [6]

    Liu B, Dong M R, Yin R R, Yin W X 2014 Chin. Phys. B 23 070510

    [7]

    Xu D D, Zhang Y 2008 Chin. J. Sensors Actuat. 21 1909 (in Chinese) [徐丹丹, 章勇 2008 传感技术学报 21 1909]

    [8]

    Zhang Y X 2012 M. S. Dissertation (Hebei: Yanshan University) (in Chinese) [张亚晓 2012 硕士学位论文 (河北: 燕山大学) ]

    [9]

    Marks M 2012 Proceedings of 26th European Conference on Modelling and Simulation Koblenz, Genrmany, May 29-June 1, 2012 p540

    [10]

    Wu M, He Y, She J H, Liu G P 2004 Automatica 40 1435

    [11]

    Qiu L J, Jiang Y, Hu C Q 2011 Transducer Microsys. Technol. 30 1 (in Chinese) [邱丽娟, 姜宇, 胡成全 2011 传感器与微系统 30 1]

    [12]

    Tao W H, Chen C L, Yang B, Guan X P 2010 Proceedings of the 12th IEEE International Conference on Communication Technology Nanjing, China, November 11-14, 2010 p1299

    [13]

    Chen B, Wang L L 2011 J. Comput. Inform. Sys. 7 1198

    [14]

    Othman J B, Bessaoud K, Bui A, Pilard L 2013 J. Comput. Sci. 4 199

    [15]

    Purohit G N, Sharma U 2012 Int. J. Contemp. Math. Sci. 7 227

    [16]

    Abdallah A E, Fevens T, Opatrny J 2013 Ad Hoc Sens. Wirl. Netw. 19 21

    [17]

    Liu H R, Yin R R, Hao X C, Dou J J, Bi W H 2009 J. Electro. Infor. Techn. 31 2751 (in Chinese) [刘浩然, 尹荣荣, 郝晓辰, 窦晶晶, 毕卫红 2009 电子与信息学报 31 2751]

    [18]

    Zhao X J, Zhuang Y, Zhao J, Xue T T 2010 J. Electron. Inform. Technol. 32 2231 (in Chinese) [赵学健, 庄毅, 赵洁, 薛佟佟 2010 电子与信息学报 32 2231]

    [19]

    Mizanian K, Yousefi, H, Jahangir A H 2009 Proceedings of the 2009 IEEE Sarnoff Symposium Princeton, USA, March 30-April 1, 2009 p1

    [20]

    Heinzelman W R, Chandrakasan A, Balakrishnan H 2000 Proceedings of the 33rd Annual Hawaii International Conference on System Sciences Maui, USA, January 4-7, 2000 p1

    [21]

    Yin R R, Liu B, Liu H R, Hao X C 2012 J. Electron. Inform. Technol. 34 2375 (in Chinese) [尹荣荣, 刘彬, 刘浩然, 郝晓辰 2012 电子与信息学报 34 2375]

    [22]

    Kleinrock L, Silvester J 1978 Proceedings of the National Telecommunications Conference Birmingham, USA, March 27, 1978 p1

  • [1]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [2]

    Wang Y Q, Yang X Y 2013 Chin. Phys. B 22 040206

    [3]

    Tong X J, Zuo K, Wang Z 2012 Acta Phys. Sin. 61 030502 (in Chinese) [佟晓筠, 左科, 王翥 2012 61 030502]

    [4]

    Huang J W, Feng J C, L S X 2014 Acta Phys. Sin. 63 050502 (in Chinese) [黄锦旺, 冯久超, 吕善翔 2014 63 050502]

    [5]

    Naincy J, Abhishek M 2014 Int. J. Innov. Adv. Computer Sci. 3 19

    [6]

    Liu B, Dong M R, Yin R R, Yin W X 2014 Chin. Phys. B 23 070510

    [7]

    Xu D D, Zhang Y 2008 Chin. J. Sensors Actuat. 21 1909 (in Chinese) [徐丹丹, 章勇 2008 传感技术学报 21 1909]

    [8]

    Zhang Y X 2012 M. S. Dissertation (Hebei: Yanshan University) (in Chinese) [张亚晓 2012 硕士学位论文 (河北: 燕山大学) ]

    [9]

    Marks M 2012 Proceedings of 26th European Conference on Modelling and Simulation Koblenz, Genrmany, May 29-June 1, 2012 p540

    [10]

    Wu M, He Y, She J H, Liu G P 2004 Automatica 40 1435

    [11]

    Qiu L J, Jiang Y, Hu C Q 2011 Transducer Microsys. Technol. 30 1 (in Chinese) [邱丽娟, 姜宇, 胡成全 2011 传感器与微系统 30 1]

    [12]

    Tao W H, Chen C L, Yang B, Guan X P 2010 Proceedings of the 12th IEEE International Conference on Communication Technology Nanjing, China, November 11-14, 2010 p1299

    [13]

    Chen B, Wang L L 2011 J. Comput. Inform. Sys. 7 1198

    [14]

    Othman J B, Bessaoud K, Bui A, Pilard L 2013 J. Comput. Sci. 4 199

    [15]

    Purohit G N, Sharma U 2012 Int. J. Contemp. Math. Sci. 7 227

    [16]

    Abdallah A E, Fevens T, Opatrny J 2013 Ad Hoc Sens. Wirl. Netw. 19 21

    [17]

    Liu H R, Yin R R, Hao X C, Dou J J, Bi W H 2009 J. Electro. Infor. Techn. 31 2751 (in Chinese) [刘浩然, 尹荣荣, 郝晓辰, 窦晶晶, 毕卫红 2009 电子与信息学报 31 2751]

    [18]

    Zhao X J, Zhuang Y, Zhao J, Xue T T 2010 J. Electron. Inform. Technol. 32 2231 (in Chinese) [赵学健, 庄毅, 赵洁, 薛佟佟 2010 电子与信息学报 32 2231]

    [19]

    Mizanian K, Yousefi, H, Jahangir A H 2009 Proceedings of the 2009 IEEE Sarnoff Symposium Princeton, USA, March 30-April 1, 2009 p1

    [20]

    Heinzelman W R, Chandrakasan A, Balakrishnan H 2000 Proceedings of the 33rd Annual Hawaii International Conference on System Sciences Maui, USA, January 4-7, 2000 p1

    [21]

    Yin R R, Liu B, Liu H R, Hao X C 2012 J. Electron. Inform. Technol. 34 2375 (in Chinese) [尹荣荣, 刘彬, 刘浩然, 郝晓辰 2012 电子与信息学报 34 2375]

    [22]

    Kleinrock L, Silvester J 1978 Proceedings of the National Telecommunications Conference Birmingham, USA, March 27, 1978 p1

  • [1] 罗小元, 李昊, 马巨海. 基于最小刚性图代数特性的无线网络拓扑优化算法.  , 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [2] 李小龙, 冯东磊, 彭鹏程. 一种基于势博弈的无线传感器网络拓扑控制算法.  , 2016, 65(2): 028401. doi: 10.7498/aps.65.028401
    [3] 蒋锐, 杨震. 基于质心迭代估计的无线传感器网络节点定位算法.  , 2016, 65(3): 030101. doi: 10.7498/aps.65.030101
    [4] 郝晓辰, 姚宁, 汝小月, 刘伟静, 辛敏洁. 基于生命期模型的无线传感器网络信道分配博弈算法.  , 2015, 64(14): 140101. doi: 10.7498/aps.64.140101
    [5] 刘浩然, 尹文晓, 董明如, 刘彬. 一种强容侵能力的无线传感器网络无标度拓扑模型研究.  , 2014, 63(9): 090503. doi: 10.7498/aps.63.090503
    [6] 方伟, 宋鑫宏. 基于Voronoi图盲区的无线传感器网络覆盖控制部署策略.  , 2014, 63(22): 220701. doi: 10.7498/aps.63.220701
    [7] 刘洲洲, 王福豹. 一种能耗均衡的无线传感器网络加权无标度拓扑研究.  , 2014, 63(19): 190504. doi: 10.7498/aps.63.190504
    [8] 刘彬, 董明如, 刘浩然, 尹荣荣, 韩丽. 基于综合故障的无线传感器网络无标度容错拓扑模型研究.  , 2014, 63(17): 170506. doi: 10.7498/aps.63.170506
    [9] 尹荣荣, 刘彬, 刘浩然, 李雅倩. 无线传感器网络中无标度拓扑的动态容错性分析.  , 2014, 63(11): 110205. doi: 10.7498/aps.63.110205
    [10] 韩丽, 刘彬, 李雅倩, 赵磊静. 能量异构的无线传感器网络加权无标度拓扑研究.  , 2014, 63(15): 150504. doi: 10.7498/aps.63.150504
    [11] 黄锦旺, 冯久超, 吕善翔. 混沌信号在无线传感器网络中的盲分离.  , 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [12] 刘浩然, 尹文晓, 韩涛, 董明如. 一种优化无线传感器网络生命周期的容错拓扑研究.  , 2014, 63(4): 040509. doi: 10.7498/aps.63.040509
    [13] 宋佳, 罗清华, 彭喜元. 基于节点健康度的无线传感器网络冗余通路控制方法.  , 2014, 63(12): 128401. doi: 10.7498/aps.63.128401
    [14] 刘向丽, 李赞, 胡易俗. 无线传感网中基于质心的高效坐标压缩算法.  , 2013, 62(7): 070201. doi: 10.7498/aps.62.070201
    [15] 祁浩, 王福豹, 邓宏. 基于无线传感器网络的地震信号特征提取方法研究.  , 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [16] 胡兆龙, 刘建国, 任卓明. 基于节点度信息的自愿免疫模型研究.  , 2013, 62(21): 218901. doi: 10.7498/aps.62.218901
    [17] 王亚奇, 杨晓元. 一种无线传感器网络簇间拓扑演化模型及其免疫研究.  , 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [18] 佟晓筠, 左科, 王翥. 基于无线传感器网络的混合混沌新分组加密算法.  , 2012, 61(3): 030502. doi: 10.7498/aps.61.030502
    [19] 王翥, 王祁, 魏德宝, 王玲. 无线传感器网络中继节点布居算法的研究.  , 2012, 61(12): 120505. doi: 10.7498/aps.61.120505
    [20] 周杰, 刘元安, 吴帆, 张洪光, 俎云霄. 基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配.  , 2011, 60(9): 090504. doi: 10.7498/aps.60.090504
计量
  • 文章访问数:  6446
  • PDF下载量:  1013
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-19
  • 修回日期:  2014-11-15
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map