搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用

杨俊亮 李中亮 李瑭 朱晔 宋丽 薛莲 张小威

引用本文:
Citation:

多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用

杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威

Characteristics of multi-crystals monfiguration X-ray diffraction and application in characterizing synchrotron beamline bandwidth

Yang Jun-Liang, Li Zhong-Liang, Li Tang, Zhu Ye, Song Li, Xue Lian, Zhang Xiao-Wei
PDF
HTML
导出引用
  • 本文报告了使用多晶体光路配置的X射线衍射实验及其用于表征上海光源BL09束线上双晶单色器出射光特性的情况. 当一个分析晶体与双晶单色器呈(+n, –n)无色散配置时, 通过退卷积得到单色器的角度带宽和相对能量带宽分别为5.40(4)'' 和1.30(1) × 10–4@10 keV; 当实验配置为(+n, +n)、(+n, –m)和(+n, +m)色散配置时, 退卷积之后测得同步辐射光束的角分布和相对能量带宽分别为26(1)''和6.3(2) × 10–4@10 keV; 处理掉双晶单色器的影响后, 可以得出与弯铁光源理论值一致的角发散度25(1)'' @10 keV. 此外, 利用多晶体的色散配置和DuMond作图的方法, 表征了一系列不同白光入射狭缝宽度下的单色器出射光的发射度和带宽的情况.
    In this paper, the X-ray diffraction experiment with multiple crystals configuration and its application in characterizing the emission characteristics of double crystal monochromator (DCM) on BL09 beamline of Shanghai Synchrotron Radiation Facility (SSRF) are reported. It is a non-dispersion configuration when the second crystal of DCM and the crystal analyzer form a (+n, –n) type experimental configuration. The rocking curve of the analyzer crystal can only reflect the operation of the DCM. It is the dispersion configurations when the second crystal of DCM and the crystal analyzer form the (+n, +n), (+n, –m) and (+n, +m) type experimental configuration. The width of the analyzer crystal rocking curve includes not only the intrinsic bandwidth of the DCM and the analyzer crystal, but also the angular divergence of the beamline. In this paper, we use the method of DuMond diagram to explicitly illustrate the characteristics of the output beam of the DCM which can be measured under the above two kinds of experimental configurations, and distinguish the diffraction characteristics of different experimental configurations at the same time. Finally, the angular bandwidth and the relative energy bandwidth of the DCM are 5.40(4) arcsec and1.30(1) × 10–4 @ 10 keV, respectively, which are obtained by deconvolution of the analyzer crystal in (+1, –1) nondispersive configuration. The angular distribution and the relative energy bandwidth of the synchrotron radiation beams are 26(1) arcsec and 6.3(2) × 10–4 @ 10 keV, respectively, which are obtained by deconvolution of the analyzer crystal and removal of dispersion broadening in (+1, +1), (+1, –3) and (+1, +3) dispersion configuration. After removing the influence of the DCM, the obtained angular divergence of the light source by 25(1) arcsec @ 10 keV, is consistent with the theoretical value of the bending source. In addition, under a series of different white beam entrance slit widths, we characterize the divergence and bandwidth of the beam emitted from the monochromator by the method of multi-crystals dispersion configuration and the DuMond diagram.
      通信作者: 李中亮, lizhongliang@zjlab.org.cn ; 张小威, zhangxw@ihep.ac.cn
    • 基金项目: 中科院-百人计划(Y7291120K2)
      Corresponding author: Li Zhong-Liang, lizhongliang@zjlab.org.cn ; Zhang Xiao-Wei, zhangxw@ihep.ac.cn
    [1]

    Jiang X M, Zheng W L, Wu J, Jing Y, Liu G 1995 Rev. Sci. Instrum. 66 1694Google Scholar

    [2]

    Zhang Z Y, Chen M, Tong Y J, Ji T, Zhu H C, Peng W W, Zhang M, Li Y J, Xiao T Q 2014 Infrared Phy. Tech. 67 521Google Scholar

    [3]

    Fischetti R F, Yoder D W, Xu S L, et al. 2007 9th International Conference on Synchrotron Radiation Instrumentation Daegu, Korea, May 28–June 2, 2006 p754

    [4]

    Yu H S, Wei X J, Li J, et al. 2015 Nucl. Sci. Tech. 26 4Google Scholar

    [5]

    Liermann H P, Konopkova Z, Morgenroth W, et al. 2015 J. Synchrotron Rad. 22 908Google Scholar

    [6]

    Tian F, Li X H, Wang Y Z, et al. 2015 Nucl. Sci. Tech. 26 1Google Scholar

    [7]

    Yamaoka H, Hiraoka N, Ito M, et al. 2000 J. Synchrotron Rad. 7 69Google Scholar

    [8]

    Dippel A C, Liermann H P, Delitz J T, et al. 2015 J. Synchrotron Rad. 22 675Google Scholar

    [9]

    Seto M, Yoda Y, Kikuta S 1995 Phys. Rev. Lett. 74 3828Google Scholar

    [10]

    Zhang X, Mochizuki T, Sugiyama H 1992 Rev. Sci. Instrum. 63 404Google Scholar

    [11]

    Beaumont J H, Hart M 1974 J. Phys. E: Sci. Intum. 7 823Google Scholar

    [12]

    Zhang X, Hiroyuki F 2006 Jpn. J. Appl. Phys. 45 7933Google Scholar

    [13]

    Yang T Y, Wen W, Yin G Z, et al. 2015 Nucl. Sci. Tech. 26 20101Google Scholar

    [14]

    Wang S S, Kong R H, Shan X B, et al. 2006 J. Synchrotron Rad. 13 415Google Scholar

    [15]

    Puik E J, Dorssen G E, Eiel K J 1991 J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films 9 3142Google Scholar

    [16]

    Gong X, Lu Q 2015 J. X-ray Sci. Technol 23 409Google Scholar

    [17]

    DuMond J W M 1937 Phys. Rev. 52 872Google Scholar

    [18]

    Zhao Z T, Xu H J 2004 Proceedings of European Particle Accelerator Conference Lucerne, Switzerland, June 5–9, 2004 p2368

    [19]

    Batterman B W, Cole H 1964 Rev. M. Phys. 36 682Google Scholar

    [20]

    Punegov V L, Pavlov K M, Karpov A V 2017 J. Appl. Cryst. 50 1256Google Scholar

  • 图 1  完美晶体对称反射的DuMond图. 微分衍射(2)式在图中对应的是一条斜率为$ {\rm{cot}}{\theta }_{\rm{B}} $的直线带. $ {\theta }_{\rm{B}} $是运动学衍射角(晶体的折射率对X线衍射的角度位置有影响, 本文暂不考虑此方面的影响), $ {\omega }_{\rm{D}} $是动力学衍射的达尔文宽, $ {\theta }_{\rm{S}} $是光束的发散角. 当完全平行的白光入射时, 对称反射晶体的可接收和出射角度都是$ {\omega }_{\rm{D}} $, 有限的角度宽带来了相应的波长分布${{\Delta \lambda}_{\rm{D}}}/{\lambda} $. 当入射的白光带有一定的角发散时, 入射晶体的角分布变大, 影响带宽的角发散也由$ {\omega }_{\rm{D}} $变为$ {\theta }_{\rm{S}} $, 角度发散带来的波长分布也变成了${{\Delta \lambda}_{\rm{S}}}/{\lambda} $

    Fig. 1.  DuMond diagram for the symmetric Bragg geometry. The differential equation (2) of diffraction formula corresponds to the line band with a slope of $ {\rm{cot}}{\theta }_{\rm{B}} $. $ {\theta }_{\rm{B}} $ and $ {\omega }_{\rm{D}} $ represent the kinematic diffraction angle and the Darwin width of the dynamic diffraction, respectively. In this article, we ignore the change of X-ray diffraction angle position which is influenced by crystal refraction. When the incident white beam is completely parallel, both the receiving and emitting angle of the symmetric crystal are the same, which can be represented by $ {\omega }_{\rm{D}} $. The limited angle broadband introduces the corresponding wavelength distribution ${{\Delta \lambda}_{\rm{D}}}/{\lambda} $. When the incident beam with a divergence angle, the distribution of the incident angle on the crystal becomes larger which affects the angular divergence of bandwidth changing from $ {\omega }_{\rm{D}} $ to $ {\theta }_{\rm{S}} $(the divergence angle of the beam) and the wavelength distribution changing to $ {{\Delta \lambda}_{\rm{S}}}/{\lambda} $

    图 2  Si111双晶单色器的第二晶和Si111分析晶体构成(+1, –1)型无色散配置的实验配置图. [111]是衍射面法线的晶向

    Fig. 2.  The experimental configuration of (+1, –1) type non-dispersive consists of the second crystal of Si111-DCM and Si111 analyzer. The[111] is the crystal direction of the normal of the diffraction plane.

    图 3  Si111双晶单色器的第二晶和Si111分析晶体构成(+1, +1)型色散配置的实验配置图

    Fig. 3.  The experimental configuration of (+1, +1) type dispersive consists of the second crystal of Si111-DCM and Si111 analyzer.

    图 4  (a)和(b)分别为无色散(+1, –1)配置和色散(+1, +1)配置条件下, 分析晶体扫描单色器出射光过程的DuMond图. 斜线区域是双晶单色器的DuMond窗口, 圆点的区域是分析晶体的DuMond窗口

    Fig. 4.  DuMond diagrams during scanning the output beam of DCM by analyzer. Panel (a) represents the non-dispersive (+1, –1) configuration and panel (b) represents the dispersive (+1, +1) configuration. The oblique line region is the DuMond window of the DCM. The point region is the DuMond window of the analyzer.

    图 5  Si111双晶单色器的第二晶和Si333分析晶体构成(+1, –3)型色散配置的实验配置图

    Fig. 5.  The experimental configuration of (+1, –3) type dispersive consists of the second crystal of Si111-DCM and Si333 analyzer.

    图 6  Si111双晶单色器的第二晶和Si333分析晶体构成(+1, +3)型色散配置的实验配置图

    Fig. 6.  The experimental configuration of (+1, +3) type dispersive consists of the second crystal of Si111-DCM and Si333 analyzer.

    图 7  (a)和(b)分别为使用Si333做分析晶体的(+1, –3)型和(+1, +3)型色散配置, 扫描单色器出射光过程的DuMond图. 绿色虚线箭头指示了扫描过程, 两个圆点的区域给出了分析晶体DuMond窗口起止位置

    Fig. 7.  DuMond diagrams during scanning the output beam of DCM by Si(333) analyzer. Panel (a) and (b) represent the (+1, –3) typeand (+1, +3) type dispersive configuration, respectively. The green dotted arrow indicates the scanning process. The two point-regions give the starting and ending position of the DuMond window of the analyzer.

    图 8  (a)和(b)分别为无色散配置和“固定”色散配置条件下不同狭缝纵向宽度时Si111分析器的摇摆曲线. (c)是无色散配置和“固定”色散配置条件下随狭缝宽度调节时摇摆曲线的半高宽的曲线

    Fig. 8.  (a) and (b) give the rocking curves of the Si (111) analyzer with different slit vertical widths under the conditions of non-dispersion configuration and “fixed dispersion” configuration, respectively. (c) gives the FWHM curve of the rocking curve when the slit vertical width is adjusted under the condition of non-dispersion configuration and “fixed dispersion” configuration.

    图 9  (a)和(b)分别为使用Si111做分析器时, (+1, –1)和(+1, +1)实验配置条件下摇摆曲线做差分后的结果. 横轴的坐标原点对应着10 keV时分析晶体的衍射角. (b)同时还是在“固定”色散排列条件下使用Si111做分析器得到的未经狭缝(角度)——波长转换的“赝”DuMond图. 从图中可以直接读取不同狭缝宽度下得到的摇摆曲线半高宽的测量值

    Fig. 9.  (a) and (b) show the results of slit width difference of rocking curve with (+1, –1) and (+1, +1) experimental configurations with Si111 analyzer, respectively. The coordinate origin of the transverse axis corresponds to the diffraction angle of the analytic crystal at 10 keV. Also, (b) is the DuMond diagram without slit (angle) - wavelength conversion obtained using Si111 analyzer under the condition of dispersion configuration. The measured values of rocking curve FWHM with different slit widths can be read directly from the figure.

    图 10  (a)和(b)分别为使用Si333做分析器时, 在(+1, –3)型和(+1, +3)型实验配置条件下得到的“赝” DuMond图

    Fig. 10.  (a) and (b) give the pseudo DuMond diagram using Si333 analyzer under the condition of (+1, –3) type and (+1, +3) type dispersion configuration, respectively.

    表 1  不同实验配置得到的实验值以及退分析器卷积和色散展宽后的值. 单位: 角秒()

    Table 1.  The experimental values obtained from different experimental configurations and the values after deconvolution of the analyzer and removal of dispersion broadening. Unit: arcsec.

    分析器衍射面实验配置色散类别测量值退卷积和色散展宽值理论值备注
    (111)(+n, –n)无色散7.64(4)5.40(4)5.38双晶单色器带宽
    (+n, +n)“固定”色散52(1)26(1)
    (333)(+n, –m)“弱”色散67(1)26(1)25.8光束的带宽
    (+n, +m)“强”色散117(1)26(1)
    下载: 导出CSV
    Baidu
  • [1]

    Jiang X M, Zheng W L, Wu J, Jing Y, Liu G 1995 Rev. Sci. Instrum. 66 1694Google Scholar

    [2]

    Zhang Z Y, Chen M, Tong Y J, Ji T, Zhu H C, Peng W W, Zhang M, Li Y J, Xiao T Q 2014 Infrared Phy. Tech. 67 521Google Scholar

    [3]

    Fischetti R F, Yoder D W, Xu S L, et al. 2007 9th International Conference on Synchrotron Radiation Instrumentation Daegu, Korea, May 28–June 2, 2006 p754

    [4]

    Yu H S, Wei X J, Li J, et al. 2015 Nucl. Sci. Tech. 26 4Google Scholar

    [5]

    Liermann H P, Konopkova Z, Morgenroth W, et al. 2015 J. Synchrotron Rad. 22 908Google Scholar

    [6]

    Tian F, Li X H, Wang Y Z, et al. 2015 Nucl. Sci. Tech. 26 1Google Scholar

    [7]

    Yamaoka H, Hiraoka N, Ito M, et al. 2000 J. Synchrotron Rad. 7 69Google Scholar

    [8]

    Dippel A C, Liermann H P, Delitz J T, et al. 2015 J. Synchrotron Rad. 22 675Google Scholar

    [9]

    Seto M, Yoda Y, Kikuta S 1995 Phys. Rev. Lett. 74 3828Google Scholar

    [10]

    Zhang X, Mochizuki T, Sugiyama H 1992 Rev. Sci. Instrum. 63 404Google Scholar

    [11]

    Beaumont J H, Hart M 1974 J. Phys. E: Sci. Intum. 7 823Google Scholar

    [12]

    Zhang X, Hiroyuki F 2006 Jpn. J. Appl. Phys. 45 7933Google Scholar

    [13]

    Yang T Y, Wen W, Yin G Z, et al. 2015 Nucl. Sci. Tech. 26 20101Google Scholar

    [14]

    Wang S S, Kong R H, Shan X B, et al. 2006 J. Synchrotron Rad. 13 415Google Scholar

    [15]

    Puik E J, Dorssen G E, Eiel K J 1991 J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films 9 3142Google Scholar

    [16]

    Gong X, Lu Q 2015 J. X-ray Sci. Technol 23 409Google Scholar

    [17]

    DuMond J W M 1937 Phys. Rev. 52 872Google Scholar

    [18]

    Zhao Z T, Xu H J 2004 Proceedings of European Particle Accelerator Conference Lucerne, Switzerland, June 5–9, 2004 p2368

    [19]

    Batterman B W, Cole H 1964 Rev. M. Phys. 36 682Google Scholar

    [20]

    Punegov V L, Pavlov K M, Karpov A V 2017 J. Appl. Cryst. 50 1256Google Scholar

  • [1] 汪书兴, 李天钧, 黄新朝, 朱林繁. 内壳层体系的X射线腔量子光学.  , 2024, 73(24): . doi: 10.7498/aps.73.20241218
    [2] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究.  , 2022, 71(4): 046101. doi: 10.7498/aps.71.20211674
    [3] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究.  , 2021, (): . doi: 10.7498/aps.70.20211674
    [4] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探.  , 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [5] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构.  , 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [6] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究.  , 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [7] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术.  , 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [8] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构.  , 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] 温志文, 祁辉荣, 代洪亮, 张余炼, 魏堃, 张建, 欧阳群, 邵剑雄. 一维丝室气体探测器衍射像差的修正方法研究.  , 2015, 64(8): 082901. doi: 10.7498/aps.64.082901
    [10] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究.  , 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [11] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法.  , 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [12] 乐孜纯, 张明, 董文, 全必胜, 刘魏, 刘恺. 制作工艺误差对X射线组合折射透镜聚焦性能影响研究.  , 2010, 59(9): 6284-6289. doi: 10.7498/aps.59.6284
    [13] 薛艳玲, 肖体乔, 吴立宏, 陈灿, 郭荣怡, 杜国浩, 谢红兰, 邓彪, 任玉琦, 徐洪杰. 利用X射线相衬显微研究野山参的特征结构.  , 2010, 59(8): 5496-5507. doi: 10.7498/aps.59.5496
    [14] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究.  , 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [15] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究.  , 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [16] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究.  , 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [17] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展.  , 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [18] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定.  , 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [19] 谢红兰, 高鸿奕, 陈建文, 王寯越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展. 具有原子分辨率的x射线荧光全息术的数值模拟研究.  , 2003, 52(9): 2223-2228. doi: 10.7498/aps.52.2223
    [20] 郭红霞, 陈雨生, 张义门, 韩福斌, 贺朝会, 周辉. 浮栅ROM器件x射线剂量增强效应实验研究.  , 2002, 51(10): 2315-2319. doi: 10.7498/aps.51.2315
计量
  • 文章访问数:  10303
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-30
  • 修回日期:  2020-02-23
  • 刊出日期:  2020-05-20

/

返回文章
返回
Baidu
map