搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaAs光电导开关非线性模式的雪崩畴输运机理

田立强 潘璁 施卫 潘艺柯 冉恩泽 李存霞

引用本文:
Citation:

GaAs光电导开关非线性模式的雪崩畴输运机理

田立强, 潘璁, 施卫, 潘艺柯, 冉恩泽, 李存霞

Mechanism of avalanche charge domain transport for nonlinear mode of GaAs photoconductive semiconductor switches

Tian Li-Qiang, Pan Cong, Shi Wei, Pan Yi-Ke, Ran En-Ze, Li Cun-Xia
PDF
HTML
导出引用
  • 光电导开关非线性模式的产生机理研究是该领域热点问题之一. 本文采用波长1064 nm、脉宽5 ns的激光脉冲触发半绝缘GaAs光电导开关, 在触发光能1 mJ、偏置电压2750 V时获得稳定的非线性波形. 基于双光子吸收模型, 计算了开关体内光生载流子浓度, 计算结果表明光生载流子弥补了材料本征载流子的不足, 在开关体内形成由光生载流子参与的电荷畴. 依据转移电子效应原理, 对畴内的峰值电场进行了计算, 结果表明高浓度载流子可使畴内峰值电场远高于材料的本征击穿场强, 致使畴内发生强烈的雪崩电离. 基于光激发雪崩畴模型, 对非线性模式的典型实验规律进行了解释, 理论与实验一致. 基于漂移扩散模型和负微分电导率效应, 对触发瞬态开关体内电场进行仿真, 结果表明开关体内存在有峰值电场达GaAs本征击穿场强的多畴输运现象. 该研究为非线性光电导开关的产生机理及光激发电荷畴理论的完善提供实验依据和理论支撑.
    Photoconductive semiconductor switch is of significance in the fields of ultafast electronics, high-repetition rate and high-power pulse power system, and THz radiation. The mechanism of the nonlinear mode of the switch is an important area of study. In this work, stable nonlinear wave forms are obtained by a semi-insulating GaAs photoconductive semiconductor switch triggered by a 5-ns laser pulse with pulsed energy of 1 mJ at a wavelength of 1064 nm under a bias of 2750 V. Based on two-photon absorption model, the photogenerated carrier concentration is calculated. The theory analysis and calculation result show that the photogenerated carrier can compensate for the lack of intrinsic carrier, and lead to the nucleation of photo-activated charge domain. According to transferred-electron effect principium, the electric field inside and outside the domain are calculated, indicating that the electric field within the domain can reach the electric field which is much larger than intrinsic breakdown electric field of GaAs material, and results in strong impact avalanche ionization in the bulk of the GaAs switch. According to the avalanche space charge domain, the typical experimental phenomena of nonlinear mode for GaAs switch are analyzed and calculated, the analysis and calculations are in excellent agreement with the experimental results. Based on drift-diffusion model and negative differential conductivity effect, the transient electric field in the bulk of the switch is simulated numerically under the optical triggering condition. The simulation results show that there are moving multiple charge domains with a peak electric filed as high as the intrinsic breakdown electric field of GaAs within the switch. This work provides the experimental evidence and theoretical support for studying the generation mechanism of the nonlinear photoconductive semiconductor switch and the improvement of the photo-activated charge domain theory.
      通信作者: 田立强, tianliqiang@xaut.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61427814, 61076087, 41975040)和中国博士后科学基金(批准号: 20100481349)资助的课题.
      Corresponding author: Tian Li-Qiang, tianliqiang@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61427814, 61076087, 41975040) and the China Postdoctoral Science Foundation (Grant No. 20100481349).
    [1]

    Sun G X, Wang X, Ding W D, Yan J Q, Shen S K, and Nie S H 2023 IEEE Trans. Electron Dev. 70 765Google Scholar

    [2]

    Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511Google Scholar

    [3]

    Han K H, Zhao W J, Zeng X, Chu E Y, Jiao Q J 2023 IEEE T. Power Electron. 38 3375Google Scholar

    [4]

    Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T A, Helgeson W D, O’Malley M W, Ruebush M H, and Brown D J 1997 IEEE T. Plasma Sci. 25 124Google Scholar

    [5]

    Zhang D H, Xu Z, Cheng G, Liu Z, Gutierrez A R, Zang W, Norris T B, Zhong Z H 2022 Nat. Commun. 13 6404Google Scholar

    [6]

    Lu P K, Jiang X H, Zhao Y F, Turan D, Jarrahi M 2022 Appl. Phys. Lett. 120 261107Google Scholar

    [7]

    Woo K, Malakoutian M, Reeves B A, Chowdhury S 2022 Appl. Phys. Lett. 120 112104Google Scholar

    [8]

    桂淮濛, 施卫 2019 68 194206Google Scholar

    Gui H M, Shi W 2019 Acta Phys. Sin. 68 194206Google Scholar

    [9]

    Tian L Q, Shi W, Feng Q Q 2011 J. Appl. Phys. 110 094507Google Scholar

    [10]

    施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平 2009 58 1219Google Scholar

    Shi W, Tian L Q, Wang X M, Xu M, Ma D M, Zhou L J, Liu H W, Xie W P 2009 Acta Phys. Sin. 58 1219Google Scholar

    [11]

    Zutavern F J, Glover S F, Reed K W, Cich M J, Mar A, Swalby M E, Saiz T A, Horry M L, Gruner F R, White F E 2008 IEEE T. Plasma Sci. 36 2533Google Scholar

    [12]

    Kelkar K S, Islam N E, Fessler C M, Nunnally W C 2006 J. Appl. Phys. 100 124905Google Scholar

    [13]

    Liu R J, Shang A N, Chen C J, Lee Y G, Yin S Z 2021 Opt. Lett. 46 825Google Scholar

    [14]

    王志权, 施卫 2022 71 188704

    Wang Z Q and Shi W 2022 Acta Phys. Sin. 71 188704

    [15]

    施卫, 马湘蓉, 薛红 2010 59 5700Google Scholar

    Shi W, Ma X R, Xue H 2010 Acta Phys. Sin. 59 5700Google Scholar

    [16]

    Kelkar K, Islam N E, Kirawanich P, Fessler C M, Nunnally W C, Kemp W T, Sharma A K 2007 IEEE T. Plasma Sci. 35 93Google Scholar

    [17]

    Chao J H, Zhu W B, Chen C J, Lee Y G, Shang A N, Yin S Z, Hoffman R C 2018 Opt. Lett. 43 3929Google Scholar

    [18]

    Hu L, Su J C, Qiu R C, Fang X 2018 IEEE T. Electron Dev. 65 1308Google Scholar

    [19]

    Chowdhury A R, Dickens J C, Neuber A A, Ness R, Joshi R P 2018 J. Appl. Phys. 123 085703Google Scholar

    [20]

    施卫, 薛红, 马湘蓉 2009 58 8554Google Scholar

    Shi W, Xue H, Ma X R 2009 Acta Phys. Sin. 58 8554Google Scholar

    [21]

    Sun Y, Hu L, Li Y D, Zhu L, Dang X, Hao Q S, Li X 2022 J. Phys. D Appl. Phys. 55 215103Google Scholar

    [22]

    Shi W, Tian L Q 2006 Appl. Phys. Lett. 89 202103Google Scholar

    [23]

    Bosch B G, Engelmann R W H 1975 Gunn-Effect Electrics (Pitman: Bath) p23

    [24]

    Kroemer H 1965 Proc. IEEE 53 1246Google Scholar

    [25]

    Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: Wiley & Sons) p652

    [26]

    Liu X H, Shi B, Jia G, Chen Z G, Ren C, Zhang Y H, Cao K, Zhao J X 2007 Appl. Phys. Lett. 90 101109Google Scholar

    [27]

    Garcia H, Kalyanaraman R 2007 Appl. Phys. Lett. 91 111114Google Scholar

    [28]

    Montoya J, Hu Q 2004 J. Appl. Phys. 95 2230Google Scholar

    [29]

    Islam N E, Schamiloglu E, Fleddermann C B, Schoenberg J S H, Joshi R P 1999 J. Appl. Phys. 86 1754Google Scholar

    [30]

    Gunn J B 1967 IEEE Trans. Electron Devices ED-14 720

    [31]

    Copeland J A 1966 J. Appl. Phys. 37 3602Google Scholar

    [32]

    Vainshtein S, Yuferev V, Palankovski V, Ong D S, Kostamovaara J 2008 Appl. Phys. Lett. 92 062114Google Scholar

    [33]

    Zhao H M, Hadizad P, Hur J H, Gundersen M A 1993 J. Appl. Phys. 73 1807Google Scholar

    [34]

    Vainshtein S, Kostamovaara J, Sveshnikov Y, Gurevich S, Kulagina M, Yuferev V, Shestak L, Sverdlov M 2004 Electron. Lett. 40 85Google Scholar

    [35]

    Zutavern F, Loubriel G, McLaughlin D, Helgeson W, O’Malley M 1992 Proc. SPIE 1632 152Google Scholar

    [36]

    Zutavern F J, Loubriel G M, O'Malley M W, Helgeson W D, Mclaughlin D L 1991 Proceedings of the Eighth IEEE International Conference on Pulsed Power San Diego, CA, USA, June 16–19, 1991 p23

    [37]

    Tian L Q, Wang H Q, Jing D, Pan C, Shi W, Zhang C 2021 IEEE Trans. Electron Devices 68 2189Google Scholar

  • 图 1  光电导开关的结构示意图

    Fig. 1.  Diagram of the structure of the lateral switch.

    图 2  光电导开关的测试电路

    Fig. 2.  Test circuit of the switch.

    图 3  偏置电压为500 V、触发光能为1 mJ时, 开关输出的50次重叠线性波形

    Fig. 3.  Superposed linear waveform of fifty times output from the switch under the bias of 500 V and trigger optical pulse energy of 1 mJ.

    图 4  偏置电压为2750 V, 触发光能为1 mJ时, 开关输出的50次重叠非线性波形, ΔU为偏置电压涨落引起的开关输出电压变化

    Fig. 4.  Superposed nonlinear waveform of fifty times output from the switch under the bias of 2750 V and trigger optical pulse energy of 1 mJ, ΔU is the uncertainty limit of output voltage caused by bias voltage fluctuation.

    图 5  电场呈三角形分布的空间电荷畴的示意图, Ep为畴内峰值电场, E0为畴外电场, Wd为畴宽, υs为载流子饱和漂移速度, x1x2分别为电荷畴后端和前端位置坐标

    Fig. 5.  Schematic of the space charge domains with a triangular shape electric field distribution, Ep is the peak electric field within the domain, E0 denotes the external electric field of the domain, and υs indicates the saturation drift velocity of the carriers, x1 and x2 represent the posterior and anterior position coordinates of the charge domain, respectively.

    图 6  雪崩畴模型, 区域A为稳态雪崩畴区, 区域B为种子畴, 区域C为未电离区

    Fig. 6.  Avalanche charge domain model, region A is steady state avalanche charge domain, region B is seed charge domain, region C is unionized area.

    图 7  触发光功率为106 W, 光触发后360 ps时开关体内载流子浓度分布

    Fig. 7.  Snapshots of the carriers concentration profile in the bulk of switch at 360 ps after the optical trigger and under a trigger optical power of 106 W.

    图 8  器件触发后300, 360和420 ps时开关体内瞬变电场分布, d1d2分别子畴和主畴的宽度, υ为电荷畴的漂移速度

    Fig. 8.  Snapshots of the electric field profiles in the bulk of the switch at 300, 360 and 420 ps, respectively after the switch triggered by the light. Here, d1 and d2 denote the width of subsidiary charge domain and main charge domain, repectively, and υ is drift velocity of the charge domain.

    Baidu
  • [1]

    Sun G X, Wang X, Ding W D, Yan J Q, Shen S K, and Nie S H 2023 IEEE Trans. Electron Dev. 70 765Google Scholar

    [2]

    Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511Google Scholar

    [3]

    Han K H, Zhao W J, Zeng X, Chu E Y, Jiao Q J 2023 IEEE T. Power Electron. 38 3375Google Scholar

    [4]

    Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T A, Helgeson W D, O’Malley M W, Ruebush M H, and Brown D J 1997 IEEE T. Plasma Sci. 25 124Google Scholar

    [5]

    Zhang D H, Xu Z, Cheng G, Liu Z, Gutierrez A R, Zang W, Norris T B, Zhong Z H 2022 Nat. Commun. 13 6404Google Scholar

    [6]

    Lu P K, Jiang X H, Zhao Y F, Turan D, Jarrahi M 2022 Appl. Phys. Lett. 120 261107Google Scholar

    [7]

    Woo K, Malakoutian M, Reeves B A, Chowdhury S 2022 Appl. Phys. Lett. 120 112104Google Scholar

    [8]

    桂淮濛, 施卫 2019 68 194206Google Scholar

    Gui H M, Shi W 2019 Acta Phys. Sin. 68 194206Google Scholar

    [9]

    Tian L Q, Shi W, Feng Q Q 2011 J. Appl. Phys. 110 094507Google Scholar

    [10]

    施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平 2009 58 1219Google Scholar

    Shi W, Tian L Q, Wang X M, Xu M, Ma D M, Zhou L J, Liu H W, Xie W P 2009 Acta Phys. Sin. 58 1219Google Scholar

    [11]

    Zutavern F J, Glover S F, Reed K W, Cich M J, Mar A, Swalby M E, Saiz T A, Horry M L, Gruner F R, White F E 2008 IEEE T. Plasma Sci. 36 2533Google Scholar

    [12]

    Kelkar K S, Islam N E, Fessler C M, Nunnally W C 2006 J. Appl. Phys. 100 124905Google Scholar

    [13]

    Liu R J, Shang A N, Chen C J, Lee Y G, Yin S Z 2021 Opt. Lett. 46 825Google Scholar

    [14]

    王志权, 施卫 2022 71 188704

    Wang Z Q and Shi W 2022 Acta Phys. Sin. 71 188704

    [15]

    施卫, 马湘蓉, 薛红 2010 59 5700Google Scholar

    Shi W, Ma X R, Xue H 2010 Acta Phys. Sin. 59 5700Google Scholar

    [16]

    Kelkar K, Islam N E, Kirawanich P, Fessler C M, Nunnally W C, Kemp W T, Sharma A K 2007 IEEE T. Plasma Sci. 35 93Google Scholar

    [17]

    Chao J H, Zhu W B, Chen C J, Lee Y G, Shang A N, Yin S Z, Hoffman R C 2018 Opt. Lett. 43 3929Google Scholar

    [18]

    Hu L, Su J C, Qiu R C, Fang X 2018 IEEE T. Electron Dev. 65 1308Google Scholar

    [19]

    Chowdhury A R, Dickens J C, Neuber A A, Ness R, Joshi R P 2018 J. Appl. Phys. 123 085703Google Scholar

    [20]

    施卫, 薛红, 马湘蓉 2009 58 8554Google Scholar

    Shi W, Xue H, Ma X R 2009 Acta Phys. Sin. 58 8554Google Scholar

    [21]

    Sun Y, Hu L, Li Y D, Zhu L, Dang X, Hao Q S, Li X 2022 J. Phys. D Appl. Phys. 55 215103Google Scholar

    [22]

    Shi W, Tian L Q 2006 Appl. Phys. Lett. 89 202103Google Scholar

    [23]

    Bosch B G, Engelmann R W H 1975 Gunn-Effect Electrics (Pitman: Bath) p23

    [24]

    Kroemer H 1965 Proc. IEEE 53 1246Google Scholar

    [25]

    Sze S M 1981 Physics of Semiconductor Devices (2nd Ed.) (New York: Wiley & Sons) p652

    [26]

    Liu X H, Shi B, Jia G, Chen Z G, Ren C, Zhang Y H, Cao K, Zhao J X 2007 Appl. Phys. Lett. 90 101109Google Scholar

    [27]

    Garcia H, Kalyanaraman R 2007 Appl. Phys. Lett. 91 111114Google Scholar

    [28]

    Montoya J, Hu Q 2004 J. Appl. Phys. 95 2230Google Scholar

    [29]

    Islam N E, Schamiloglu E, Fleddermann C B, Schoenberg J S H, Joshi R P 1999 J. Appl. Phys. 86 1754Google Scholar

    [30]

    Gunn J B 1967 IEEE Trans. Electron Devices ED-14 720

    [31]

    Copeland J A 1966 J. Appl. Phys. 37 3602Google Scholar

    [32]

    Vainshtein S, Yuferev V, Palankovski V, Ong D S, Kostamovaara J 2008 Appl. Phys. Lett. 92 062114Google Scholar

    [33]

    Zhao H M, Hadizad P, Hur J H, Gundersen M A 1993 J. Appl. Phys. 73 1807Google Scholar

    [34]

    Vainshtein S, Kostamovaara J, Sveshnikov Y, Gurevich S, Kulagina M, Yuferev V, Shestak L, Sverdlov M 2004 Electron. Lett. 40 85Google Scholar

    [35]

    Zutavern F, Loubriel G, McLaughlin D, Helgeson W, O’Malley M 1992 Proc. SPIE 1632 152Google Scholar

    [36]

    Zutavern F J, Loubriel G M, O'Malley M W, Helgeson W D, Mclaughlin D L 1991 Proceedings of the Eighth IEEE International Conference on Pulsed Power San Diego, CA, USA, June 16–19, 1991 p23

    [37]

    Tian L Q, Wang H Q, Jing D, Pan C, Shi W, Zhang C 2021 IEEE Trans. Electron Devices 68 2189Google Scholar

  • [1] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究.  , 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] 赵珂, 宋军, 张瀚. 给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响.  , 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] 桂淮濛, 施卫. 储能电容对GaAs光电导开关快前沿正负对称脉冲输出特性的影响.  , 2019, 68(19): 194206. doi: 10.7498/aps.68.20190321
    [4] 桂淮濛, 施卫. 线性模式下GaAs光电导开关的时间抖动特性.  , 2018, 67(18): 184207. doi: 10.7498/aps.67.20180548
    [5] 杨哲, 张祥, 肖思, 何军, 顾兵. 双光子激发ZnSe自由载流子超快动力学研究.  , 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [6] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展.  , 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [7] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响.  , 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [8] 赵珂, 刘朋伟, 韩广超. 分子动力学模拟方法在非线性光学中的应用.  , 2011, 60(12): 124216. doi: 10.7498/aps.60.124216
    [9] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱.  , 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [10] 郑加金, 陆云清, 李培丽. 激发态分子内质子转移有机分子HBT的三阶非线性光学特性.  , 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [11] 苗泉, 赵鹏, 孙玉萍, 刘纪彩, 王传奎. 超短脉冲激光在DBASVP分子中传播时的双光子面积演化和光限幅效应.  , 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [12] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响.  , 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [13] 施卫, 屈光辉, 王馨梅. 半绝缘GaAs光电导开关非线性电脉冲超快上升特性研究.  , 2009, 58(1): 477-481. doi: 10.7498/aps.58.477
    [14] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应.  , 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [15] 吴文智, 郑植仁, 金钦汉, 闫玉禧, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的三阶光学非线性极化特性.  , 2008, 57(2): 1177-1182. doi: 10.7498/aps.57.1177
    [16] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究.  , 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [17] 张衍亮, 江 丽, 钮月萍, 孙真荣, 丁良恩, 王祖赓. Na2中由一对耦合能级相干叠加导致的双光子吸收的干涉增强效应.  , 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
    [18] 江 俊, 李 宁, 陈贵宾, 陆 卫, 王明凯, 杨学平, 吴 刚, 范耀辉, 李永贵, 袁先漳. FEL诱导半导体材料非线性光吸收.  , 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [19] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究.  , 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [20] 刘发民, 王天民, 张立德. 纳米GaSb-SiO2复合薄膜的非线性光学特性.  , 2002, 51(1): 183-186. doi: 10.7498/aps.51.183
计量
  • 文章访问数:  2520
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-05-30
  • 上网日期:  2023-06-29
  • 刊出日期:  2023-09-05

/

返回文章
返回
Baidu
map