搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学

刘晓威 张可烨

引用本文:
Citation:

有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学

刘晓威, 张可烨

Effective-mass approach to controlling double-well dynamics of atomic Bose-Einstein condensates

Liu Xiao-Wei, Zhang Ke-Ye
PDF
导出引用
  • 操控原子玻色-爱因斯坦凝聚体在双势阱中的动力学通常是通过改变势阱深度来实现,本文提出了一种基于调节原子有效质量的控制方案,可以在不改变双阱势的前提下操控凝聚体的双阱动力学.利用双模近似,本文解析地导出了超冷原子在双阱势中的隧穿强度和相互作用强度对有效质量的依赖关系,并基于平均场近似数值模拟了在有效质量调节下的凝聚体动力学演化,展示了隧穿振荡和自束缚等典型的双阱动力学行为.此外,本文的研究还发现,借助负有效质量效应,这一方案甚至可以等效地实现对负散射长度原子凝聚体双阱动力学行为的操控.
    The realization of Bose-Einstein condensation in dilute atomic gases opens an exciting way to quantum mechanics and begins a new area of quantum simulation. As a macroscopic quantum object and a many-body bosonic system, the Bose-Einstein condensates can show numerous exotic quantum effects and have naturally attracted great attention. One of the simplest quantum many-body systems to be realized experimentally and studied theoretically is ultra-cold atoms in a double-well potential. This system can exhibit a great variety of quantum interference phenomena such as tunneling oscillation, self-trapping and the entanglement of macroscopic superpositions. Specifically, the double-well potentials built by optical or magnetic fields are easy to change and the many-body interaction between ultra-cold atoms can be changed by the method of Feshbach resonance, enabling the precise quantum control of the double-well dynamics of the condensates. In the present work, we study the dynamics of a condensate in a trapping potential consisting of an unalterable double-well trap and an additional moving optical lattice. If the lattice space is much smaller than the size of the double-well trap, the system can be simplified into a double-well trapped condensate with a tunable effective mass. Using the mean-field factorization assumption, together with a two-mode approximation, we obtain the analytic expressions for the dependence of the tunneling rate and the self-collision strength on the effective mass. The tunneling rate decays and the collision strength grows up with the increase of the effective mass. As a consequence of their different changes, we conclude that the adjustment of the effective mass of the ultra-cold atoms, rather than the changing of the trap barrier or adjusting of the atomic scattering length, is an alternative approach to controlling the double-well dynamics of the condensate. Via numerical simulations of the mean-field dynamical equations with some realistic parameters, we show that a transition between the quantum coherent tunneling and the self-trapping behaviors is experimentally realizable with the mass-control approach. Specifically, we show that the approach is still valid for the case of negative mass. Moreover, we find that the negative-mass case can be used even to stimulate the double-well dynamics of the condensate with a negative atomic scattering length.
      通信作者: 张可烨, kyzhang@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574086,91436211,11234003)、国家重点研发计划(批准号:2016YFA0302001)、国家自然科学基金委应急管理项目(批准号:11654005)和上海市启明星人才计划(批准号:16QA1401600)资助的课题.
      Corresponding author: Zhang Ke-Ye, kyzhang@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574086, 91436211, 11234003), the National Key Research and Development Program of China (Grant No. 2016YFA0302001), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 11654005), and the Shanghai Rising-Star Program, China (Grant No. 16QA1401600).
    [1]

    Hinds E A, Boshier M G, Hughes I G 1998 Phys. Rev. Lett. 80 645

    [2]

    Thywissen J H, Olshanii M, Zabow G, Drndic M, Johnson K S, Westervelt R M, Prentiss M 1999 Eur. Phys. J. D 7 361

    [3]

    Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmeison K, Phillips W D 2006 Phys. Rev. Lett. 97 170406

    [4]

    Dutton Z, Ruostekoski J 2004 Phys. Rev. Lett. 93 193602

    [5]

    Giltner D M, McGowan R W, Lee S A 1995 Phys. Rev. Lett. 75 2638

    [6]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2406

    [7]

    Stringari S 2001 Phys. Rev. Lett. 86 4725

    [8]

    Denschlag J H, Simsarian J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002 J. Phys. B:At. Mol. Opt. Phys. 35 3095

    [9]

    Choi D, Niu Q 1999 Phys. Rev. Lett. 82 2022

    [10]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [11]

    Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L, Tosi M P 2001 Phys. Rev. Lett. 86 4447

    [12]

    Xu Z J, Cheng C, Yang H S, Wu Q, Xiong H W 2004 Acta Phys. Sin. 53 2835 (in Chinese)[徐志君, 程成, 杨欢耸, 武强, 熊宏伟2004 53 2835]

    [13]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [14]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [15]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2001 Nature 415 39

    [16]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [17]

    Liu W M, Fan W B, Zheng W M, Liang J Q, Chui S T 2002 Phys. Rev. Lett. 88 170408

    [18]

    Smerzi A, Fantoni S, Giovanazz S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950

    [19]

    Pu H, Baksmaty L O, Zhang W, Bigelow N P, Meystre P 2003 Phys. Rev. A 67 043605

    [20]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [21]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Acta Phys. Sin. 61 230508 (in Chinese)[何章明, 王登龙, 丁建文, 颜晓红2012 61 230508]

    [22]

    He Z M, Wang D L 2007 Acta Phys. Sin. 56 3088 (in Chinese)[何章明, 王登龙2007 56 3088]

    [23]

    Mosk A P 2005 Phys. Rev. Lett. 95 040403

    [24]

    Zhang K Y, Meystre P, Zhang W P 2013 Phys. Rev. A 88 043632

    [25]

    Ananikian D, Bergeman T 2006 Phys. Rev. A 73 013604

    [26]

    Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E, Leanhardt A E 2004 Phys. Rev. Lett. 92 050405

    [27]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463

    [28]

    Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Phys. Rev. A 59 620

    [29]

    Michael A, Gati R, Fölling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402

    [30]

    Spagnolli G, Semeghini G, Masi L, Ferioli G, Trenkwalder A, Coop S, Landini M, Pezzé L, Modugno G, Inguscio M, Smerzi A, Fattori M 2017 arxiv 1703. 02370[quant-ph]

    [31]

    Gati R, Oberthaler M K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 R61

    [32]

    Jack M W, Collett M J, Walls D F 1996 Phys. Rev. A 54 R4625

  • [1]

    Hinds E A, Boshier M G, Hughes I G 1998 Phys. Rev. Lett. 80 645

    [2]

    Thywissen J H, Olshanii M, Zabow G, Drndic M, Johnson K S, Westervelt R M, Prentiss M 1999 Eur. Phys. J. D 7 361

    [3]

    Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmeison K, Phillips W D 2006 Phys. Rev. Lett. 97 170406

    [4]

    Dutton Z, Ruostekoski J 2004 Phys. Rev. Lett. 93 193602

    [5]

    Giltner D M, McGowan R W, Lee S A 1995 Phys. Rev. Lett. 75 2638

    [6]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2406

    [7]

    Stringari S 2001 Phys. Rev. Lett. 86 4725

    [8]

    Denschlag J H, Simsarian J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002 J. Phys. B:At. Mol. Opt. Phys. 35 3095

    [9]

    Choi D, Niu Q 1999 Phys. Rev. Lett. 82 2022

    [10]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [11]

    Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L, Tosi M P 2001 Phys. Rev. Lett. 86 4447

    [12]

    Xu Z J, Cheng C, Yang H S, Wu Q, Xiong H W 2004 Acta Phys. Sin. 53 2835 (in Chinese)[徐志君, 程成, 杨欢耸, 武强, 熊宏伟2004 53 2835]

    [13]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [14]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [15]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2001 Nature 415 39

    [16]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [17]

    Liu W M, Fan W B, Zheng W M, Liang J Q, Chui S T 2002 Phys. Rev. Lett. 88 170408

    [18]

    Smerzi A, Fantoni S, Giovanazz S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950

    [19]

    Pu H, Baksmaty L O, Zhang W, Bigelow N P, Meystre P 2003 Phys. Rev. A 67 043605

    [20]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [21]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Acta Phys. Sin. 61 230508 (in Chinese)[何章明, 王登龙, 丁建文, 颜晓红2012 61 230508]

    [22]

    He Z M, Wang D L 2007 Acta Phys. Sin. 56 3088 (in Chinese)[何章明, 王登龙2007 56 3088]

    [23]

    Mosk A P 2005 Phys. Rev. Lett. 95 040403

    [24]

    Zhang K Y, Meystre P, Zhang W P 2013 Phys. Rev. A 88 043632

    [25]

    Ananikian D, Bergeman T 2006 Phys. Rev. A 73 013604

    [26]

    Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E, Leanhardt A E 2004 Phys. Rev. Lett. 92 050405

    [27]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463

    [28]

    Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Phys. Rev. A 59 620

    [29]

    Michael A, Gati R, Fölling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402

    [30]

    Spagnolli G, Semeghini G, Masi L, Ferioli G, Trenkwalder A, Coop S, Landini M, Pezzé L, Modugno G, Inguscio M, Smerzi A, Fattori M 2017 arxiv 1703. 02370[quant-ph]

    [31]

    Gati R, Oberthaler M K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 R61

    [32]

    Jack M W, Collett M J, Walls D F 1996 Phys. Rev. A 54 R4625

  • [1] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学.  , 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [2] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究.  , 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [3] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控.  , 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [4] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究.  , 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [5] 张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚. 共心双环外势中两分量偶极玻色-爱因斯坦凝聚体的基态结构研究.  , 2015, 64(6): 060302. doi: 10.7498/aps.64.060302
    [6] 徐岩, 樊炜, 冀彦君, 宋仁刚, 陈兵, 赵振华, 陈达. 非相对论弱相互作用玻色气体的有效场理论处理.  , 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [7] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应.  , 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [8] 黄芳, 李海彬. 双势阱中玻色-爱因斯坦凝聚的绝热隧穿.  , 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [9] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制.  , 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [10] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性.  , 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [11] 房永翠, 杨志安, 杨丽云. 对称双势阱玻色-爱因斯坦凝聚系统在周期驱动下的动力学相变及其量子纠缠熵表示.  , 2008, 57(2): 661-666. doi: 10.7498/aps.57.661
    [12] 臧小飞, 李菊萍, 谭 磊. 偶极-偶极相互作用下双势阱中旋量玻色-爱因斯坦凝聚磁化率的非线性动力学性质.  , 2007, 56(8): 4348-4352. doi: 10.7498/aps.56.4348
    [13] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响.  , 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [14] 陆广成, 李增花, 左 维, 罗培燕. 热核物质中基态关联修正下的单核子势和核子有效质量.  , 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [15] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据.  , 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [16] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响.  , 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [17] 蔡长英, 任中洲, 鞠国兴. 指数型变化有效质量的三维Schr?dinger方程的解析解.  , 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [18] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应.  , 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [19] 崔海涛, 王林成, 衣学喜. 低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应.  , 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [20] 闫珂柱, 谭维翰. 简谐势阱中具有吸引相互作用原子体系的玻色-爱因斯坦凝聚.  , 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
计量
  • 文章访问数:  6048
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-14
  • 修回日期:  2017-05-12
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map