Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analyses of the output power and beam quality of the tapered terahertz quantum cascade lasers

Xu Tian-Hong Yao Chen Wan Wen-Jian Zhu Yong-Hao Cao Jun-Cheng

Citation:

Analyses of the output power and beam quality of the tapered terahertz quantum cascade lasers

Xu Tian-Hong, Yao Chen, Wan Wen-Jian, Zhu Yong-Hao, Cao Jun-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We present a quasi-three-dimensional efficient model for simulating and designing the terahertz quantum cascade laser with nonlinear axial waveguide structure, based on the finite difference beam propagation method. The traditional beam propagation method is widely used to simulate the beam profile of the passive waveguide. In order to study the active device, however, the current induced variation in the active region should also be considered in the numerical simulation model. In the model presented in this paper, the phase and the amplitude of the propagating confined field in the active waveguide are determined by a few linear and non-linear effects. The parameters relating to the linear effects, such as the intrinsic refractive index profile and the intrinsic losses of the waveguide under zero current injection, are calculated by using COMSOL-Multiphysics. While the non-linear effects, such as the modal gain and the refractive index variation induced by current injection, are considered in a rigorous way by including the rate-equation set for calculating the carrier dynamics in the active region. The parameters used in the rate-equation set are obtained by referring to the literature and fitting the experimental results of the considered terahertz lasers. By adding the current induced gain and refractive index variation, the presented beam propagation model is able to simulate many current-dependant properties of a laser, such as the output power, the gain guiding effect, and the self-focusing effect. We show in this paper that the latter two effects have influence on inner-waveguide beam profile, and the competitive balance between them determines the output beam quality. By utilizing this numerical model, the terahertz quantum cascade laser with tapered waveguide structure is simulated, and the influences of the taper angle on output power and beam quality are investigated. According to the simulation results, we find that there is an obvious increase in the output power when the taper angle is increased from 0 to 3 degree, while the increment in the output power decreases rapidly when the taper angle is further increased. Besides, we observe that for the far field the full width at half maximum of the output beam decreases sharply with increasing the taper angle. However, when the taper angle equals 8 degree, multiple lateral modes are observed, which indicates poor output beam quality of this device and poor beam coupling efficiency between this device and the power meter.Therefore, although the simulation results show that the output power of this device is higher than that of the device with 5 degree taper angle, the experiment results show that the measured output power is lower. So the taper angle is not the larger the better, but there exists an optimum value, at which the terahertz quantum cascade laser can achieve the highest effective output power.
      Corresponding author: Cao Jun-Cheng, jccao@mail.sim.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, 61176086, 61404149), the Major National Development Project of Scientific Instrument and Equipment of China (Grant No. 2011YQ150021), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707), the Major Project of Chinese Academy of Sciences (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Yang Fan Program, China (Grant No. 15YF1414400).
    [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [2]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156

    [3]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38

    [4]

    Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese) [黎华, 韩英军, 谭智勇, 张戎, 曹俊诚 2010 59 2169]

    [5]

    Wan W J, Yin R, Tan Z Y, Wang F, Han Y J, Cao J C 2013 Acta Phys. Sin. 62 210701 (in Chinese) [万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚 2013 62 210701]

    [6]

    Williams B S, Kumar S, Hu Q, Reno J L 2006 Electron. Lett. 42 89

    [7]

    Williams B, Kumar S, Hu Q, Reno J 2005 Opt. Express 13 3331

    [8]

    Li L, Chen L, Zhu J, Freeman J, Dean P, Valavanis A, Davies A G, Linfield E H 2014 Electron. Lett. 50 309

    [9]

    Kumar S, Hu Q, Reno J L 2009 Appl. Phys. Lett. 94 131105

    [10]

    Kumar S, Williams B S, Qin Q, Lee A W, Hu Q, Reno J L 2007 Opt. Express 15 113

    [11]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462

    [12]

    Li Y, Wang J, Yang N, Liu J, Wang T, Liu F, Wang Z, Chu W, Duan S 2013 Opt. Express 21 15998

    [13]

    Kohen S, Williams B S, Hu Q 2005 J. Appl. Phys. 97 053106

    [14]

    Okamoto K 2006 Fundamentals of Optical Waveguides (San Diego: Elsevier Inc.) p365

    [15]

    Marciante J R, Agrawal G P 1996 IEEE J. Quantum Electron. 32 590

    [16]

    Liu J Q, Chen J Y, Liu F Q, Li L, Wang L J, Wang Z G 2010 Chin. Phys. Lett. 27 104205

    [17]

    Li H, Manceau J M, Andronico A, Jagtap V, Sirtori C, Li L H, Linfield E H, Davies A G, Barbieri S 2014 Appl. Phys. Lett. 104 241102

    [18]

    Wang J, Wu W D, Zhang X L, Duan S Q 2012 Chin. J. Comput. Phys. 29 127 (in Chinese) [王健, 吴卫东, 章小丽, 段素青 2012 计算物理 29 127]

    [19]

    Coldren L A, Corzine S W 1995 Diode Lasers and Photonic Integrated Circuits (New York: John Wiley Sons, Inc.) p209

    [20]

    Choi H, Diehl L, Wu Z K, Giovannini M, Faist J, Capasso F, Norris T B 2008 Phys. Rev. Lett. 100 167401

    [21]

    Jirauschek C 2010 Appl. Phys. Lett. 96 011103

    [22]

    Barbieri S, Sirtori C, Page H, Beck M, Faist J, Nagle J 2000 IEEE J. Quantum Electron. 36 736

    [23]

    Thompson M G, Rae A R, Mo X, Penty R V, White I H 2009 IEEE J. Sel. Top. Quantum Electron. 15 661

    [24]

    Xu T, Bardella P, Montrosset I 2013 IEEE Photon. Technol. Lett. 25 63

    [25]

    Hadley G R 1992 IEEE J. Quantum Electron. 28 363

    [26]

    Nikitichev D, Ding Y, Cataluna M, Rafailov E, Drzewietzki L, Breuer S, Elsaesser W, Rossetti M, Bardella P, Xu T, Montrosset I, Krestnikov I, Livshits D, Ruiz M, Tran M, Robert Y, Krakowski M 2012 Laser Phys. 22 715

    [27]

    Li J C, Chen J B, Fan Z B, Ma K, Lou Y L 2002 J. Optoelectron. Laser 13 87 (in Chinese) [李俊昌, 陈劲波, 樊则宾, 马琨, 楼宇丽 2002 光电子激光 13 87]

  • [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [2]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F 2002 Nature 417 156

    [3]

    Kumar S 2011 IEEE J. Sel. Top. Quantum Electron. 17 38

    [4]

    Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese) [黎华, 韩英军, 谭智勇, 张戎, 曹俊诚 2010 59 2169]

    [5]

    Wan W J, Yin R, Tan Z Y, Wang F, Han Y J, Cao J C 2013 Acta Phys. Sin. 62 210701 (in Chinese) [万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚 2013 62 210701]

    [6]

    Williams B S, Kumar S, Hu Q, Reno J L 2006 Electron. Lett. 42 89

    [7]

    Williams B, Kumar S, Hu Q, Reno J 2005 Opt. Express 13 3331

    [8]

    Li L, Chen L, Zhu J, Freeman J, Dean P, Valavanis A, Davies A G, Linfield E H 2014 Electron. Lett. 50 309

    [9]

    Kumar S, Hu Q, Reno J L 2009 Appl. Phys. Lett. 94 131105

    [10]

    Kumar S, Williams B S, Qin Q, Lee A W, Hu Q, Reno J L 2007 Opt. Express 15 113

    [11]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nat. Photon. 8 462

    [12]

    Li Y, Wang J, Yang N, Liu J, Wang T, Liu F, Wang Z, Chu W, Duan S 2013 Opt. Express 21 15998

    [13]

    Kohen S, Williams B S, Hu Q 2005 J. Appl. Phys. 97 053106

    [14]

    Okamoto K 2006 Fundamentals of Optical Waveguides (San Diego: Elsevier Inc.) p365

    [15]

    Marciante J R, Agrawal G P 1996 IEEE J. Quantum Electron. 32 590

    [16]

    Liu J Q, Chen J Y, Liu F Q, Li L, Wang L J, Wang Z G 2010 Chin. Phys. Lett. 27 104205

    [17]

    Li H, Manceau J M, Andronico A, Jagtap V, Sirtori C, Li L H, Linfield E H, Davies A G, Barbieri S 2014 Appl. Phys. Lett. 104 241102

    [18]

    Wang J, Wu W D, Zhang X L, Duan S Q 2012 Chin. J. Comput. Phys. 29 127 (in Chinese) [王健, 吴卫东, 章小丽, 段素青 2012 计算物理 29 127]

    [19]

    Coldren L A, Corzine S W 1995 Diode Lasers and Photonic Integrated Circuits (New York: John Wiley Sons, Inc.) p209

    [20]

    Choi H, Diehl L, Wu Z K, Giovannini M, Faist J, Capasso F, Norris T B 2008 Phys. Rev. Lett. 100 167401

    [21]

    Jirauschek C 2010 Appl. Phys. Lett. 96 011103

    [22]

    Barbieri S, Sirtori C, Page H, Beck M, Faist J, Nagle J 2000 IEEE J. Quantum Electron. 36 736

    [23]

    Thompson M G, Rae A R, Mo X, Penty R V, White I H 2009 IEEE J. Sel. Top. Quantum Electron. 15 661

    [24]

    Xu T, Bardella P, Montrosset I 2013 IEEE Photon. Technol. Lett. 25 63

    [25]

    Hadley G R 1992 IEEE J. Quantum Electron. 28 363

    [26]

    Nikitichev D, Ding Y, Cataluna M, Rafailov E, Drzewietzki L, Breuer S, Elsaesser W, Rossetti M, Bardella P, Xu T, Montrosset I, Krestnikov I, Livshits D, Ruiz M, Tran M, Robert Y, Krakowski M 2012 Laser Phys. 22 715

    [27]

    Li J C, Chen J B, Fan Z B, Ma K, Lou Y L 2002 J. Optoelectron. Laser 13 87 (in Chinese) [李俊昌, 陈劲波, 樊则宾, 马琨, 楼宇丽 2002 光电子激光 13 87]

  • [1] Zhang Xiao-Li, Yin Qiu-Peng, Li Guo, Yao Xi, Ding Li-Lei. Symmetric equivalent circuit theory and numerical simulation analysis of nonlinear magnetoelectric laminated composite. Acta Physica Sinica, 2024, 73(23): 237501. doi: 10.7498/aps.73.20240934
    [2] Feng Wei, Wei Shu-Ting, Cao Jun-Cheng. 6G technology development vision and terahertz communication. Acta Physica Sinica, 2021, 70(24): 244303. doi: 10.7498/aps.70.20211729
    [3] Yao Jia-Feng, Wan Jian-Fen, Yang Lu, Liu Kai, Chen Bai, Wu Hong-Tao. Electrical characteristics of cells with electrical impedance spectroscopy. Acta Physica Sinica, 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [4] Liao Xiao-Yu, Cao Jun-Cheng, Li Hua. Research progress of terahertz semiconductor optical frequency combs. Acta Physica Sinica, 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [5] Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Wang Zu-Jun, Liu Min-Bo, Liu Jing, Sheng Jiang-Kun, Dong Guan-Tao, Xue Yuan-Yuan. Radiation effect and degradation mechanism in 65 nm CMOS transistor. Acta Physica Sinica, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [6] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [7] Cheng Qiu-Hu, Wang Shi-Yu, Guo Zhen, Cai De-Fang, Li Bing-Bin. Simulation model of super Gaussian beam pumped Q-switched solid-state laser. Acta Physica Sinica, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [8] Wang Chang-Hong, Lin Tao, Zeng Zhi-Huan. Analysis and simulation of semiconductor thermoelectric power generation process. Acta Physica Sinica, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [9] Tan Cheng, Liang Zhi-Shan. Modeling and simulation analysis of fractional-order Boost converter in pseudo-continuous conduction mode. Acta Physica Sinica, 2014, 63(7): 070502. doi: 10.7498/aps.63.070502
    [10] Bi Jin-Shun, Liu Gang, Luo Jia-Jun, Han Zheng-Sheng. Numerical simulation of single-event-transient effects on ultra-thin-body fully-depleted silicon-on-insulator transistor based on 22 nm process node. Acta Physica Sinica, 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [11] Zhang Yin, Chen Ming-Yang, Zhou Jun, Zhang Yong-Kang. Investigation on large-mode-area flat-topped optical fiber with microstructured core and its transmission characteristics. Acta Physica Sinica, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [12] Zhang Wen-Ming, Li Xue, Liu Shuang, Li Ya-Qian, Wang Bo-Hua. Chaos and the control of multi-time delay feedback for some nonlinear relative rotation system. Acta Physica Sinica, 2013, 62(9): 094502. doi: 10.7498/aps.62.094502
    [13] Qiu Liu-Chao. Numerical simulation of deformation process of viscous liquid drop based on the incompressible smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [14] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [15] Yang Ding-Xin, Hu Zheng, Yang Yong-Min. The analysis of stochastic resonance of periodic signal with large parameters. Acta Physica Sinica, 2012, 61(8): 080501. doi: 10.7498/aps.61.080501
    [16] Xie Zi-Jian, Hu Zuo-Qi, Wang Yu-Hui, Zhao Xu. Numerical simulation of RESET operation for multilevel storage in phase change memory cell. Acta Physica Sinica, 2012, 61(10): 100201. doi: 10.7498/aps.61.100201
    [17] Sun Di-Hua, Tian Chuan. A traffic flow lattice model with the consideration of driver anticipation effect and its numerical simulation. Acta Physica Sinica, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [18] Wang Fa-Qiang, Ma Xi-Kui. Fractional order modeling and simulation analysis of Boost converter in continuous conduction mode operation. Acta Physica Sinica, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [19] Qiao Xiao-Hua, Bao Bo-Cheng. Three-dimensional four-wing generalized augmented Lü system. Acta Physica Sinica, 2009, 58(12): 8152-8159. doi: 10.7498/aps.58.8152
    [20] Tian He, Zhang Yun-Dong, Wang Hao, Qiu Wei, Wang Nan, Yuan Ping. The numerical emulation of linear characteristics of optical pulse propagation in microring coupled-resonator optical waveguides. Acta Physica Sinica, 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
Metrics
  • Abstract views:  6922
  • PDF Downloads:  475
  • Cited By: 0
Publishing process
  • Received Date:  07 April 2015
  • Accepted Date:  17 June 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map