Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser ranging system based on double intensity modulation

Wang Ju Shao Qi Yu Jin-Long He Ke-Rui Luo Hao Ma Chuang Cai Zi-Heng Zheng Zi-Yue Cai Ben

Citation:

Laser ranging system based on double intensity modulation

Wang Ju, Shao Qi, Yu Jin-Long, He Ke-Rui, Luo Hao, Ma Chuang, Cai Zi-Heng, Zheng Zi-Yue, Cai Ben
PDF
HTML
Get Citation
  • Long-range, high-precision, and high-refresh rate absolute distance measurement based on double intensity modulation is proposed and experimentally demonstrated. In this scheme, a Mach-Zehnder modulator is utilized to perform bidirectional modulation by a reversible optical path. In the Mach-Zehnder modulator, interference demodulation is completed by bidirectional modulated light with time difference. By adjusting the driving frequency of the modulator, the curve of light intensity versus driving frequency is achieved. Consequently, the distance to be measured can be obtained by extracted the frequency interval between two adjacent light intensity minimum points. In the traditional double polarization modulation ranging, the optical carrier is polarized by a polarizing beam splitter (PBS) before phase modulator. Moreover, a quarter wave or Faraday rotating mirror need to be placed to adjust the polarization in front of the target object. Therefore, the polarization state is an indispensable factor in the traditional double polarization modulation ranging. Due to the advantage of the intensity modulation, absolute distance measurement is achieved without additional polarization control, greatly simplifying the system. Theoretical analysis of the system is developed, which is then demonstrated by experiments. In the experiments, we achieved the following results. Firstly, the relationship between the intensity of the output light of the system and the modulation frequency is theoretically analyzed, which proved to be a cosine form. Secondly, swing method is introduced to realize high-speed absolute distance measurement during the analytical distance algorithm, and we achieved a refresh rate of 2 kHz in the experiments. Thirdly, the relationship between measurement ranging precision and frequency stability is analyzed. When the modulation frequency is 8.9 GHz, the experimentally measured frequency stability is on the order of 10–7. And when the distance to be measured is 2.73 m, the standard deviation of ranging reaches 1 μm, which represents the precision of the system. That is, the relative measurement precision is also on the order of 10–7, which is consistent with theoretical analysis. Finally, when the distance to be measured increases from 1.57 m to 100.83 m, the measurement precision increases from 1 μm to 30 μm. It is worth mentioning that the relative measurement precision of the system is always stable in the order of 10–7. Our scheme has some significant advantages, such as long-range, high-precision, high-refresh rate, and a simple and compact configuration. Moreover, our method can be used in important applications such as precision instruments, metrology, and aerospace.
      Corresponding author: Yu Jin-Long, yujinlong@tju.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62005194).
    [1]

    王镓, 李达飞, 何锡明, 成子青, 许倩, 钱雪茹, 万文辉 2022 深空探测学报 9 62

    Wang J, Li D F, He X M, Cheng Z Q, Xu Q, Qian X R, Wan W H 2022 J. Deep Space Explor. 9 62

    [2]

    于勇, 陶剑, 范玉青 2009 航空制造技术 11 56Google Scholar

    Yu Y, Tao J, Fan Y Q 2009 Aeronaut. Manuf. Technol. 11 56Google Scholar

    [3]

    邵珠法 2005 硕士学位论文 (成都: 电子科技大学)

    Shao Z F 2005 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [4]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [5]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [6]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982Google Scholar

    [7]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716Google Scholar

    [8]

    Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095Google Scholar

    [9]

    Lee J, Han S, Lee K, Bae E, Kim S, Lee S, Kim S W, Kim Y J 2013 Meas. Sci. Technol. 24 045201Google Scholar

    [10]

    Wu G H, Liao L, Xiong S L, Li G Y, Cai Z J, Zhu Z 2018 Sci. Rep. 8 4362Google Scholar

    [11]

    Armano M, Audley H, Baird J, et al. 2018 Phys. Rev. Lett. 120 061101Google Scholar

    [12]

    Gao R H, Liu H S, Luo Z R, Jin G 2019 Chin. Opt. 12 425Google Scholar

    [13]

    Gong Y G, Luo J, Wang B 2021 Nat. Astron. 5 881Google Scholar

    [14]

    Nissinen J, Nissinen I, Kostamovaara J 2009 IEEE J. Solid-State Circuits 44 1486Google Scholar

    [15]

    Wang T S, Huo J, Wang P C, Dong P, Yang R, Li M F 2017 Proceedings of the 2017 Symposium on Quantum Information Technology and Applications Beijing, China, August 6–15, 2017 p50

    [16]

    Kilpela A, Pennala R, Kostamovaara J 2001 Rev. Sci. Instrum. 72 2197Google Scholar

    [17]

    刘玉周 2015 硕士学位论文 (武汉: 华中科技大学)

    Liu Y Z 2015 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [18]

    许贤泽, 翁名杰, 徐逢秋, 白翔 2017 光学精密工程 8 1979

    Xu X Z, Weng M J, Xu F Q, Bai X 2017 Opt. Precis. Eng. 8 1979

    [19]

    郑大青, 陈伟民, 陈丽, 李存龙 2015 光电子·激光 26 303

    Zheng D Q, Chen W M, Chen L, Li C L 2015 J. Optoelectron. Laser 26 303

    [20]

    黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 63 100602Google Scholar

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar

    [21]

    肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元 2016 65 100601Google Scholar

    Xiao Y, Yu J L, Wang J, Wang W R, Wang Z X, Xie T Y 2016 Acta Phys. Sin. 65 100601Google Scholar

    [22]

    高书苑, 石俊凯, 纪荣祎, 黎尧, 周维虎 2018 中国激光 45 4005

    Gao S Y, Shi J K, Ji R W, Li Y, Zhou W H 2018 Chin. J. Lasers 45 4005

    [23]

    高书苑, 黎尧, 纪荣祎, 石俊凯, 胡哲文, 周维虎 2019 光学精密工程 27 279Google Scholar

    Gao S Y, Li Y, Ji R W, Shi J K, Hu Z W, Zhou W H 2019 Opt. Precis. Eng. 27 279Google Scholar

    [24]

    高超, 纪荣祎, 高书苑, 董登峰, 周维虎 2022 光学精密工程 30 246

    Gao C, Ji R Y, Gao S Y, Dong D F, Zhou W H 2022 Opt. Precis. Eng. 30 246

    [25]

    亢洋 2021 硕士学位论文 (北京: 北京邮电大学)

    Kang Y 2021 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [26]

    张伟婷 2020 硕士学位论文 (成都: 电子科技大学)

    Zhang W T 2020 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [27]

    Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859Google Scholar

  • 图 1  二次强度调制原理示意图(Cir, 环形器; MZM, 马赫曾德尔调制器; PD, 光电探测器)

    Figure 1.  Schematic diagram of double intensity modulation (Cir, circulator; MZM, Mach-Zehnder modulator; PD, photo detector).

    图 2  马赫-曾德尔调制器传输曲线

    Figure 2.  Transmission curve of Mach-Zehnder modulator

    图 3  第一类贝塞尔函数

    Figure 3.  Bessel function of the first kind

    图 4  二次强度调制测距实验结构图(Cir, 环形器; MZM, 马赫-曾德尔调制器; VOA, 可调光衰减; PD, 光电探测器; A/D, 模数转换)

    Figure 4.  Experimental structure diagram of double intensity modulation ranging (Cir, circulator; MZM, Mach-Zehnder modulator; VOA, variable optical attenuator; PD, photo detector; A/D, analog to digital converter).

    图 5  实验扫频曲线

    Figure 5.  Experimental sweep curve

    图 6  不同位置下f$ \Delta U $的关系 (a) f在光强极小值点对应频率的左侧; (b) f为光强极小值点对应的频率; (c) f在光强极小值点对应频率的右侧

    Figure 6.  Relationship between f and $ \Delta U $ at different positions: (a) f is on the left side of the frequency corresponding to the light intensity minimum point; (b) f is the frequency corresponding to the minimum point of light intensity; (c) f is on the right side of the frequency corresponding to the light intensity minimum point.

    图 7  摇摆差值曲线及其零点局部放大 (a)摇摆差值曲线; (b)摇摆差值零点局部放大

    Figure 7.  Swing difference curve and local amplification at zero point: (a) Swing difference curve; (b) partial amplification of zero point of swing difference.

    图 8  系统测距结果

    Figure 8.  Distance measurement results of the system

    表 1  f1的相对稳定度

    Table 1.  Relative stability of f1.

    Group Average of
    $ f_{1}$/Hz
    Standard
    deviation of
    $ f_{1}$/Hz
    Relative
    accuracy/10–7
    8965550359 2737 3.05
    8965546127 2760 3.07
    8965538910 3736 4.17
    DownLoad: CSV

    表 2  相对测距精度

    Table 2.  Relative distance measurement accuracy.

    Group Average of D/m Standard deviation
    of D/μm
    Relative accuracy
    /10–7
    1.575537 1 6.35
    9.139261 5 5.47
    23.313040 8 3.43
    38.786468 10 2.57
    54.107275 15 2.77
    64.199287 16 2.55
    79.673707 26 3.49
    100.830172 30 2.98
    DownLoad: CSV
    Baidu
  • [1]

    王镓, 李达飞, 何锡明, 成子青, 许倩, 钱雪茹, 万文辉 2022 深空探测学报 9 62

    Wang J, Li D F, He X M, Cheng Z Q, Xu Q, Qian X R, Wan W H 2022 J. Deep Space Explor. 9 62

    [2]

    于勇, 陶剑, 范玉青 2009 航空制造技术 11 56Google Scholar

    Yu Y, Tao J, Fan Y Q 2009 Aeronaut. Manuf. Technol. 11 56Google Scholar

    [3]

    邵珠法 2005 硕士学位论文 (成都: 电子科技大学)

    Shao Z F 2005 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [4]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [5]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [6]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982Google Scholar

    [7]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716Google Scholar

    [8]

    Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095Google Scholar

    [9]

    Lee J, Han S, Lee K, Bae E, Kim S, Lee S, Kim S W, Kim Y J 2013 Meas. Sci. Technol. 24 045201Google Scholar

    [10]

    Wu G H, Liao L, Xiong S L, Li G Y, Cai Z J, Zhu Z 2018 Sci. Rep. 8 4362Google Scholar

    [11]

    Armano M, Audley H, Baird J, et al. 2018 Phys. Rev. Lett. 120 061101Google Scholar

    [12]

    Gao R H, Liu H S, Luo Z R, Jin G 2019 Chin. Opt. 12 425Google Scholar

    [13]

    Gong Y G, Luo J, Wang B 2021 Nat. Astron. 5 881Google Scholar

    [14]

    Nissinen J, Nissinen I, Kostamovaara J 2009 IEEE J. Solid-State Circuits 44 1486Google Scholar

    [15]

    Wang T S, Huo J, Wang P C, Dong P, Yang R, Li M F 2017 Proceedings of the 2017 Symposium on Quantum Information Technology and Applications Beijing, China, August 6–15, 2017 p50

    [16]

    Kilpela A, Pennala R, Kostamovaara J 2001 Rev. Sci. Instrum. 72 2197Google Scholar

    [17]

    刘玉周 2015 硕士学位论文 (武汉: 华中科技大学)

    Liu Y Z 2015 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [18]

    许贤泽, 翁名杰, 徐逢秋, 白翔 2017 光学精密工程 8 1979

    Xu X Z, Weng M J, Xu F Q, Bai X 2017 Opt. Precis. Eng. 8 1979

    [19]

    郑大青, 陈伟民, 陈丽, 李存龙 2015 光电子·激光 26 303

    Zheng D Q, Chen W M, Chen L, Li C L 2015 J. Optoelectron. Laser 26 303

    [20]

    黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 63 100602Google Scholar

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar

    [21]

    肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元 2016 65 100601Google Scholar

    Xiao Y, Yu J L, Wang J, Wang W R, Wang Z X, Xie T Y 2016 Acta Phys. Sin. 65 100601Google Scholar

    [22]

    高书苑, 石俊凯, 纪荣祎, 黎尧, 周维虎 2018 中国激光 45 4005

    Gao S Y, Shi J K, Ji R W, Li Y, Zhou W H 2018 Chin. J. Lasers 45 4005

    [23]

    高书苑, 黎尧, 纪荣祎, 石俊凯, 胡哲文, 周维虎 2019 光学精密工程 27 279Google Scholar

    Gao S Y, Li Y, Ji R W, Shi J K, Hu Z W, Zhou W H 2019 Opt. Precis. Eng. 27 279Google Scholar

    [24]

    高超, 纪荣祎, 高书苑, 董登峰, 周维虎 2022 光学精密工程 30 246

    Gao C, Ji R Y, Gao S Y, Dong D F, Zhou W H 2022 Opt. Precis. Eng. 30 246

    [25]

    亢洋 2021 硕士学位论文 (北京: 北京邮电大学)

    Kang Y 2021 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [26]

    张伟婷 2020 硕士学位论文 (成都: 电子科技大学)

    Zhang W T 2020 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [27]

    Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859Google Scholar

  • [1] Liu Xin-Yu, Yang Su-Hui, Liao Ying-Qi, Lin Xue-Tong. Laser underwater ranging based on wavelet transform. Acta Physica Sinica, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [2] Li Kun, Yang Su-Hui, Liao Ying-Qi, Lin Xue-Tong, Wang Xin, Zhang Jin-Ying, Li Zhuo. Underwater ranging with intensity modulated 532 nm laser source. Acta Physica Sinica, 2021, 70(8): 084203. doi: 10.7498/aps.70.20201612
    [3] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [4] Meng Wen-Dong, Zhang Hai-Feng, Deng Hua-Rong, Tang Kai, Wu Zhi-Bo, Wang Yu-Rong, Wu Guang, Zhang Zhong-Ping, Chen Xin-Yang. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection. Acta Physica Sinica, 2020, 69(1): 019502. doi: 10.7498/aps.69.20191299
    [5] Xie Tian-Yuan, Wang Ju, Wang Zi-Xiong, Ma Chuang, Yu Yang, Li Tian-Yu, Fang Jie, Yu Jin-Long. Long-range, high-precision absolute distance measurement technology based on alternately oscillating optoelectronic oscillator. Acta Physica Sinica, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [6] Cao Hui, Song You-Jian, Yu Jia-He, Shi Hao-Sen, Hu Ming-Lie, Wang Qing-Yue. Singular spectrum analysis for precision improvement in dual-comb laser ranging. Acta Physica Sinica, 2018, 67(1): 010601. doi: 10.7498/aps.67.20171922
    [7] Huang Min-Shuang, Ma Peng, Liu Xiao-Chen. Multi-pulse laser ranging method for pre-detection with high frequency resonance. Acta Physica Sinica, 2018, 67(7): 074202. doi: 10.7498/aps.67.20172079
    [8] Pan Hao, Qu Xing-Hua, Shi Chun-Zhao, Li Ya-Ting, Zhang Fu-Min. Precision evaluation method of measuring frequency modulated continuous wave laser distance. Acta Physica Sinica, 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [9] Huang Ke, Li Song, Ma Yue, Tian Xin, Zhou Hui, Zhang Zhi-Yu. Theoretical model and correction method of range walk error for single-photon laser ranging. Acta Physica Sinica, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [10] Xu Xiao-Bin, Zhang He, Zhang Xiang-Jin, Chen Shan-Shan, Zhang Wei. Effect of plane target characteristics on ranging distribution for pulse laser detection. Acta Physica Sinica, 2016, 65(21): 210601. doi: 10.7498/aps.65.210601
    [11] Liao Lei, Yi Wang-Min, Yang Zai-Hua, Wu Guan-Hao. Synthetic-wavelength based absolute distance measurement using heterodyne interferometry of a femtosecond laser. Acta Physica Sinica, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [12] Zhang Xiao-Sheng, Yi Wang-Min, Hu Ming-Hao, Yang Zai-Hua, Wu Guan-Hao. Large-scale absolute distance measurement using inter-mode beat of a femtosecond laser. Acta Physica Sinica, 2016, 65(8): 080602. doi: 10.7498/aps.65.080602
    [13] Liu Guo-Dong, Xu Xin-Ke, Liu Bing-Guo, Chen Feng-Dong, Hu Tao, Lu Cheng, Gan Yu. A method of suppressing vibration for high precision broadband laser frequency scanning interferometry. Acta Physica Sinica, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [14] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [15] Xiao Yang, Yu Jin-Long, Wang Ju, Wang Wen-Rui, Wang Zi-Xiong, Xie Tian-Yuan, Yu Yang, Xue Ji-Qiang. Relationship between modulation frequency and range accuracy in the double polarization modulation range finding system. Acta Physica Sinica, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [16] Kou Tian, Wang Hai-Yan, Wang Fang, Wu Xue-Ming, Wang Ling, Xu Qiang. Ranging characteristic and uncertainty of airborne multi-pulse laser. Acta Physica Sinica, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [17] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [18] Shi Guang, Zhang Fu-Min, Qu Xing-Hua, Meng Xiang-Song. Absolute distance measurement by high resolution frequency modulated continuous wave laser. Acta Physica Sinica, 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [19] Hei Ke-Fei, Yu Jin-Long, Wang Ju, Wang Wen-Rui, Jia Shi, Wu Qiong, Xue Ji-Qiang. Variable frequency range finding technology based on double polarization modulation method and system implementation. Acta Physica Sinica, 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [20] Wang Guo-Chao, Yan Shu-Hua, Yang Jun, Lin Cun-Bao, Yang Dong-Xing, Zou Peng-Fei. Analysis of an innovative method for large-scale high-precision absolute distance measurement based on multi-heterodyne interference of dual optical frequency combs. Acta Physica Sinica, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
Metrics
  • Abstract views:  2355
  • PDF Downloads:  135
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2023
  • Accepted Date:  30 July 2023
  • Available Online:  05 September 2023
  • Published Online:  20 November 2023

/

返回文章
返回
Baidu
map