-
The mechanical strengths of silicon wafers are crucial for the manufacturing yield of integrated circuits (ICs), which have received intensive attention over the years. With reducing the feature size of ICs, the mechanical strengths of silicon wafers become more significant. Actually, the gliding of indentation dislocations on single-crystalline silicon wafers at a given temperature reflects the mechanical strengths of silicon wafers. Since the gliding of indentation dislocations is driven by the residual stress around the indentation, the investigation on the correlation between the residual stress and dislocation gliding is of significance. In this paper, we first use micro-Raman microscopy to characterize the relief of stress around the indentation due to the annealling at 300 or 500 ℃. Then the effect of such a relief-stress on the gliding of indentation dislocations at 700-900 ℃ is investigated. In the case without the prior stress-relief, the indentation dislocations glide to the maximum distance after 2 h annealling at 700-900 ℃. With the prior stress-relief due to the annealling at 300 or 500 ℃, the indentation dislocations can still glide to the maximum distance after 2 h annealling at 900 ℃, however the gliding velocity significantly decreases and the gliding distance is remarkably reduced after 2 h annealling at 700 or 800 ℃. Such a reduction of gliding distance is most significant in the case of 700 ℃ annealling following the stress-relief with the 500 ℃/2 h annealling. Despite the prior stress-relief, as long as the annealing time at 700 or 800 ℃ is sufficiently extended, the indentation dislocations can glide to the maximum distance. In view of the above results, it is believed that the maximum gliding distance of indentation dislocations at a given temperature is independent of the values of residual stress around the indentation provided that the residual stresses are larger than the critical stress for driving the dislocation movement. Nevertheless, the annealing time for achieving the maximum gliding distance at a given temperature should be remarkably extended as the residual stresses around the indentation are relieved.
-
Keywords:
- silicon wafer /
- indentation /
- dislocation gliding /
- stress-relief
[1] Hu S M 1973 Appl. Phys. Lett. 5 22
[2] Hu S M 1975 J. Appl. Phys. 46 1470
[3] Hu S M 1977 Appl. Phys. Lett. 3 31
[4] Hu S M, Patrick W J 1975 J. Appl. Phys. 5 46
[5] Yonenaga I 2005 J. Appl. Phys. 98 023517
[6] Zeng Z D, Zeng Y H, Ma X Y, Yang D R 2011 J. Cryst. Growth. 324 93
[7] Xu L M, Gao C, Dong P, Zhao J J, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 168101 (in Chinese) [徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁 2013 62 168101]
[8] Lee S W, Danyluk S 1988 J. Mater. Sci. 1 23
[9] Cook R F 2006 J. Mater. Sci. 3 41
[10] Puech P, Pinel S, Jasinevicius R G, Pizani P S 2000 J. Appl. Phys. 8 88
[11] Hu S M 1975 J. Appl. Phys. 4 46
[12] Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]
[13] Deng Q, Ma Y, Yang X H, Ye L J, Zhang X Z, Zhang Q, Fu H W 2012 Acta Phys. Sin. 61 247701 (in Chinese) [邓泉, 马勇, 杨晓红, 叶利娟, 张学忠, 张起, 付宏伟 2012 61 247701]
[14] Hu S M 1978 J. Appl. Phys. 11 49
[15] Sumino K, Yonenaga I 1993 Phys. Status. Solidi. A 138 573
[16] Zeng Z D, Ma X Y, Yang D R 2010 J. Cryst. Growth 312 169
[17] Zeng Z, Murphy J D, Falster R J, Ma X Y, Yang D R, Wilshaw P R 2011 J. Appl. Phys. 6 109
[18] de Wolf I, Jian C, van Spengen W M 2001 Opt. Laser. Eng. 2 36
-
[1] Hu S M 1973 Appl. Phys. Lett. 5 22
[2] Hu S M 1975 J. Appl. Phys. 46 1470
[3] Hu S M 1977 Appl. Phys. Lett. 3 31
[4] Hu S M, Patrick W J 1975 J. Appl. Phys. 5 46
[5] Yonenaga I 2005 J. Appl. Phys. 98 023517
[6] Zeng Z D, Zeng Y H, Ma X Y, Yang D R 2011 J. Cryst. Growth. 324 93
[7] Xu L M, Gao C, Dong P, Zhao J J, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 168101 (in Chinese) [徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁 2013 62 168101]
[8] Lee S W, Danyluk S 1988 J. Mater. Sci. 1 23
[9] Cook R F 2006 J. Mater. Sci. 3 41
[10] Puech P, Pinel S, Jasinevicius R G, Pizani P S 2000 J. Appl. Phys. 8 88
[11] Hu S M 1975 J. Appl. Phys. 4 46
[12] Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 214209]
[13] Deng Q, Ma Y, Yang X H, Ye L J, Zhang X Z, Zhang Q, Fu H W 2012 Acta Phys. Sin. 61 247701 (in Chinese) [邓泉, 马勇, 杨晓红, 叶利娟, 张学忠, 张起, 付宏伟 2012 61 247701]
[14] Hu S M 1978 J. Appl. Phys. 11 49
[15] Sumino K, Yonenaga I 1993 Phys. Status. Solidi. A 138 573
[16] Zeng Z D, Ma X Y, Yang D R 2010 J. Cryst. Growth 312 169
[17] Zeng Z, Murphy J D, Falster R J, Ma X Y, Yang D R, Wilshaw P R 2011 J. Appl. Phys. 6 109
[18] de Wolf I, Jian C, van Spengen W M 2001 Opt. Laser. Eng. 2 36
Catalog
Metrics
- Abstract views: 6417
- PDF Downloads: 167
- Cited By: 0