Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum pseudocritical point in the unbounded quasiperiodic transverse field Ising chain

Zhang Zhen-Jun Li Wen-Juan Zhu Xuan Xiong Ye Tong Pei-Qing

Citation:

Quantum pseudocritical point in the unbounded quasiperiodic transverse field Ising chain

Zhang Zhen-Jun, Li Wen-Juan, Zhu Xuan, Xiong Ye, Tong Pei-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We study the quantum pseudocritical points in the unbounded quasiperiodic transverse field Ising chain of finite-size systematically. Firstly, we study the derivatives of averaged magnetic moment and the averaged concurrence with transverse fields. Both of them show two visible peaks, with are nearly not raised when the length of chain is increased. Moreover, the places where the peaks occur in the transverse field are obviously different from that of the quantum phase transition point in the thermodynamic limit. These results are very different from those of the bounded quasiperiodic transverse field Ising chain and the disordered transverse field Ising chain. Then, we analyze the origin of the two visible peaks. For that we study the derivative of magnetic moment for each spin with transverse field. For all spins, the single magnetic moment only show one peak. However, the places where the peaks occur are not random. The peaks always occur in two regions. Thus, the derivatives of averaged magnetic moment reveal two peaks. Furthermore, we study the probability distribution of the pseudocritical points through finding out the peaks of the single magnetic moment in 1000 samples. The distribution is not Guassian. This result is obviously different from that of the disordered case. Besides, the pseudocritical points nearly do not occur at the quantum phase transition point. Finally, we analyze the origin of the pseudocritical points. For that we study the relationship between the spin places and the corresponding places of pseudocritical points. It is found that the pseudocritical points are caused by the two groups that exist in the nearest neighboring interactions of the unbounded quasiperiodic structure. When a spin is in one group, this group will decide the probable place of the pseudocritical point. Through this study, we find that although the quantum phase transition behaviors of the unbounded quasiperiodic transverse field Ising chain and the disordered transverse field Ising chain belong to the same universal class in the thermodynamic limit, the thermodynamic behaviors of the two Ising chains are very different as in finite sizes. The differences are caused by the special structure in the unbounded quasiperiodic system.
      Corresponding author: Zhang Zhen-Jun, hi_zhangzhenjun@sina.com;pqtong@njnu.edu.cn ; Tong Pei-Qing, hi_zhangzhenjun@sina.com;pqtong@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos.11175087,11305045), the National Science Foundation of Hunan Province of China(Grant No.2015JJ6006), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2013B00414).
    [1]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [2]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge University Press, England)

    [3]

    Grenier M, Mandel O, Esslinger T, Hnsch and Bloch I 2002 Nature 415 39

    [4]

    Vojta M 2003 Rep. Prog. Phys. 66 2069

    [5]

    Wang W G, Qin P Q, He L W, Wang P 2010 Phys. Rev. E 81 016214

    [6]

    Igli F, Lin Y-C, Rieger H, Monthus C 2007 Phys. Rev. B 76 064421

    [7]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [8]

    Levine D, Steinhardt P 1984 Phys. Rev. Lett. 53 2477

    [9]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768

    [10]

    St A 1987 Commun. Math. Phys. 111 409

    [11]

    Gumbs G, Ali M K 1988 Phys. Rev. Lett. 60 1081

    [12]

    Holzer M 1988 Phys. Rev. B 38 5756

    [13]

    Severin M, Riklund R 1989 Phys. Rev. B 39 10362

    [14]

    Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896

    [15]

    Godrche C, Luck J M 1992 Phys. Rev. B 45 176

    [16]

    Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465

    [17]

    Doria M, Satija I 1988 Phys. Rev. Lett. 60 444

    [18]

    Benza V G 1989 Europhys. Lett. 8 321

    [19]

    Luck J M 1993 J. Stat. Phys. 72 417

    [20]

    Grimm U, Baake M 1994 J. Stat. Phys. 74 1233

    [21]

    Hrmisson J, Grimm U, Baake M 1997 J. Phys. A 30 7315

    [22]

    Hrmisson J, Grimm U 1998 Phys. Rev. B 57 R673

    [23]

    Tong P Q, Zhong M 2002 Phys. Rev. B 65 064421

    [24]

    Tong P Q, Liu X X 2006 Phys. Rev. Lett. 97 017201

    [25]

    Wotters W 1998 Phys. Rev. Lett. 80 2245

    [26]

    Pfeuty P 1979 Phys. Lett. A 72 245

    [27]

    Jordan P, Wigner E 1928 Z. Physik 47 631

    [28]

    Arnesen M, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [29]

    Gringrich R and Adami C 2002 Phys. Rev. Lett. 89 270402

    [30]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [31]

    Vidal G, Latorre J I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902

    [32]

    Wu L, Sarandy M S, Lidar D A 2004 Phys. Rev. Lett. 93 250404

    [33]

    Gu S, Deng S, Li Y, Lin H 2004 Phys. Rev. Lett. 93 086402

    [34]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [35]

    Gong L Y, Tong P Q 2008 Phys. Rev. B 78 115114

    [36]

    Zhu X, Tong P Q 2008 Chin. Phys. B 17 1623

    [37]

    Zhang S J, Jiang J J, Liu Y J 2008 Acta Phys. Sin. 57 0531(in Chinese) [张松俊, 蒋建军, 刘拥军 2008 57 0531]

    [38]

    Wang P, Zheng Q, Wang W G 2010 Chin. Phys. Lett. 27 080301

    [39]

    Wang L C, Shen J, and Yi X X 2011 Chin. Phys. B 20 050306

    [40]

    Osborne T, Nielsen M 2002 Phys. Rev. A 66 032110

  • [1]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [2]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge University Press, England)

    [3]

    Grenier M, Mandel O, Esslinger T, Hnsch and Bloch I 2002 Nature 415 39

    [4]

    Vojta M 2003 Rep. Prog. Phys. 66 2069

    [5]

    Wang W G, Qin P Q, He L W, Wang P 2010 Phys. Rev. E 81 016214

    [6]

    Igli F, Lin Y-C, Rieger H, Monthus C 2007 Phys. Rev. B 76 064421

    [7]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [8]

    Levine D, Steinhardt P 1984 Phys. Rev. Lett. 53 2477

    [9]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768

    [10]

    St A 1987 Commun. Math. Phys. 111 409

    [11]

    Gumbs G, Ali M K 1988 Phys. Rev. Lett. 60 1081

    [12]

    Holzer M 1988 Phys. Rev. B 38 5756

    [13]

    Severin M, Riklund R 1989 Phys. Rev. B 39 10362

    [14]

    Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896

    [15]

    Godrche C, Luck J M 1992 Phys. Rev. B 45 176

    [16]

    Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465

    [17]

    Doria M, Satija I 1988 Phys. Rev. Lett. 60 444

    [18]

    Benza V G 1989 Europhys. Lett. 8 321

    [19]

    Luck J M 1993 J. Stat. Phys. 72 417

    [20]

    Grimm U, Baake M 1994 J. Stat. Phys. 74 1233

    [21]

    Hrmisson J, Grimm U, Baake M 1997 J. Phys. A 30 7315

    [22]

    Hrmisson J, Grimm U 1998 Phys. Rev. B 57 R673

    [23]

    Tong P Q, Zhong M 2002 Phys. Rev. B 65 064421

    [24]

    Tong P Q, Liu X X 2006 Phys. Rev. Lett. 97 017201

    [25]

    Wotters W 1998 Phys. Rev. Lett. 80 2245

    [26]

    Pfeuty P 1979 Phys. Lett. A 72 245

    [27]

    Jordan P, Wigner E 1928 Z. Physik 47 631

    [28]

    Arnesen M, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901

    [29]

    Gringrich R and Adami C 2002 Phys. Rev. Lett. 89 270402

    [30]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [31]

    Vidal G, Latorre J I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902

    [32]

    Wu L, Sarandy M S, Lidar D A 2004 Phys. Rev. Lett. 93 250404

    [33]

    Gu S, Deng S, Li Y, Lin H 2004 Phys. Rev. Lett. 93 086402

    [34]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [35]

    Gong L Y, Tong P Q 2008 Phys. Rev. B 78 115114

    [36]

    Zhu X, Tong P Q 2008 Chin. Phys. B 17 1623

    [37]

    Zhang S J, Jiang J J, Liu Y J 2008 Acta Phys. Sin. 57 0531(in Chinese) [张松俊, 蒋建军, 刘拥军 2008 57 0531]

    [38]

    Wang P, Zheng Q, Wang W G 2010 Chin. Phys. Lett. 27 080301

    [39]

    Wang L C, Shen J, and Yi X X 2011 Chin. Phys. B 20 050306

    [40]

    Osborne T, Nielsen M 2002 Phys. Rev. A 66 032110

  • [1] Zhang Hai-Song, Lu Mao-Cong, Li Zhi-Gang. An expansion effect based pseudo-boiling critical point model for supercritical CO2. Acta Physica Sinica, 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [2] Du Xiao-Ying, Yu Zhen-Hua. Critical behaviors of Ising model in a fractal lattice. Acta Physica Sinica, 2023, 72(8): 080503. doi: 10.7498/aps.72.20222432
    [3] From Transverse Field Ising Chain to Quantum E8 Integrable Model. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211836
    [4] Jiang Lu-Bing, Li Ning-Xuan, Ji Kai. Formation and suppression of nonthermal statistics in peridically driven quantum Ising models. Acta Physica Sinica, 2020, 69(14): 140501. doi: 10.7498/aps.69.20191657
    [5] Zou Jun-Hui, Zhang Juan. Photonic bandgap compensation and extension for hybrid quasiperiodic heterostructures. Acta Physica Sinica, 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [6] Chen A-Li, Liang Tong-Li, Wang Yue-Sheng. Study on band gap properties of two-dimensional 8-fold quasi-periodic phononic crystals. Acta Physica Sinica, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [7] Wang Xiao-Na, Geng Xing-Guo, Zang Du-Yang. Drag-reduction of one-dimensional period and puasiperiod groove structures. Acta Physica Sinica, 2013, 62(5): 054701. doi: 10.7498/aps.62.054701
    [8] Yang Li-Feng, Wang Ya-Fei, Zhou Ying. The transmission properties in one-dimensional piezoelectric Fibonacci-class quasi-periodical phononic crystals. Acta Physica Sinica, 2012, 61(10): 107702. doi: 10.7498/aps.61.107702
    [9] Liu Yue, Zhang Wei, Feng Xue, Liu Xiao-Ming. Experimental investigation on chaotic behaviors in loss-modulated erbium-doped fiber-ring lasers. Acta Physica Sinica, 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [10] Dou Jun-Hong, Sheng Yan, Zhang Dao-Zhong. Temperature and wavelength tuning of second harmonic generation in a nonlinear photonic quasi-crystal. Acta Physica Sinica, 2009, 58(7): 4685-4688. doi: 10.7498/aps.58.4685
    [11] He Wen-Ping, Feng Guo-Lin, Gao Xin-Quan, Chou Ji-Fan. Dynamics of the Lorenz system under quasiperiodic driving. Acta Physica Sinica, 2006, 55(6): 3175-3179. doi: 10.7498/aps.55.3175
    [12] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [13] GAO ZHAN, WANG ZHEN-LIN, XU JIAN-HONG. CRITICAL BEHAVIOR AT THE SURFACE OF A SEMI INFINITE MIXED SPIN ISING SYSTEM WITH SURFACE RANDOM FIELD. Acta Physica Sinica, 1997, 46(10): 2029-2035. doi: 10.7498/aps.46.2029
    [14] WANG ZHI-GUO, XU BO-WEI. THE BOSONIZATION FORM AND NEW CRITICAL REGION OF THE QUANTUM ASHKIN-TELLER CHAIN. Acta Physica Sinica, 1997, 46(5): 841-845. doi: 10.7498/aps.46.841
    [15] Wang Yong-Qiang, Li Zhen-Ya. . Acta Physica Sinica, 1995, 44(5): 811-817. doi: 10.7498/aps.44.811
    [16] ZHENG RUI-LUN, HU XIAN-QUAN. THE INFLUENCES OF ANHARMONIC VIBRATION ON CRITICAL POINT AND BOYLE CURVE OF LIQUID Ar. Acta Physica Sinica, 1994, 43(8): 1254-1261. doi: 10.7498/aps.43.1254
    [17] FU XIU-JUN, GUO ZI-ZHENG, ZHOU PEI-QIN, LIU YOU-YAN. SPECTRAL PROPERTIES OF THE GENERALIZED FIBONACCI QUASIPERIODIC CHAINS. Acta Physica Sinica, 1992, 41(8): 1330-1337. doi: 10.7498/aps.41.1330
    [18] WANG FU-GAO, TANG KUN-FA, HU JIA-ZHEN. CRITICAL BEHAVIOUR OF ISING MODEL WITH THREE-SPIN INTERACTIONS ON THREE-NODE HIERARCHICAL LATTICES. Acta Physica Sinica, 1989, 38(7): 1196-1198. doi: 10.7498/aps.38.1196
    [19] TANG KUN-FA, HU JIA-ZHEN. POUR-BRANCH CRITICAL SURFACE AND CORRESPONDING CRITICAL BEHAVIOUR FOR ISING MODEL. Acta Physica Sinica, 1988, 37(3): 515-519. doi: 10.7498/aps.37.515
    [20] TANG KUN-FA, HU JIA-ZHEN. THE CRITICAL TEMPERATURE CURVE OF THE GENERALIZED MIXED SPIN MODEL. Acta Physica Sinica, 1988, 37(1): 132-135. doi: 10.7498/aps.37.132
Metrics
  • Abstract views:  5833
  • PDF Downloads:  204
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2015
  • Accepted Date:  15 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map