-
We study the quantum pseudocritical points in the unbounded quasiperiodic transverse field Ising chain of finite-size systematically. Firstly, we study the derivatives of averaged magnetic moment and the averaged concurrence with transverse fields. Both of them show two visible peaks, with are nearly not raised when the length of chain is increased. Moreover, the places where the peaks occur in the transverse field are obviously different from that of the quantum phase transition point in the thermodynamic limit. These results are very different from those of the bounded quasiperiodic transverse field Ising chain and the disordered transverse field Ising chain. Then, we analyze the origin of the two visible peaks. For that we study the derivative of magnetic moment for each spin with transverse field. For all spins, the single magnetic moment only show one peak. However, the places where the peaks occur are not random. The peaks always occur in two regions. Thus, the derivatives of averaged magnetic moment reveal two peaks. Furthermore, we study the probability distribution of the pseudocritical points through finding out the peaks of the single magnetic moment in 1000 samples. The distribution is not Guassian. This result is obviously different from that of the disordered case. Besides, the pseudocritical points nearly do not occur at the quantum phase transition point. Finally, we analyze the origin of the pseudocritical points. For that we study the relationship between the spin places and the corresponding places of pseudocritical points. It is found that the pseudocritical points are caused by the two groups that exist in the nearest neighboring interactions of the unbounded quasiperiodic structure. When a spin is in one group, this group will decide the probable place of the pseudocritical point. Through this study, we find that although the quantum phase transition behaviors of the unbounded quasiperiodic transverse field Ising chain and the disordered transverse field Ising chain belong to the same universal class in the thermodynamic limit, the thermodynamic behaviors of the two Ising chains are very different as in finite sizes. The differences are caused by the special structure in the unbounded quasiperiodic system.
-
Keywords:
- unbounded /
- quasiperiodic /
- Ising chain /
- pseudocritical points
[1] Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039
[2] Sachdev S 1999 Quantum Phase Transitions (Cambridge University Press, England)
[3] Grenier M, Mandel O, Esslinger T, Hnsch and Bloch I 2002 Nature 415 39
[4] Vojta M 2003 Rep. Prog. Phys. 66 2069
[5] Wang W G, Qin P Q, He L W, Wang P 2010 Phys. Rev. E 81 016214
[6] Igli F, Lin Y-C, Rieger H, Monthus C 2007 Phys. Rev. B 76 064421
[7] Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951
[8] Levine D, Steinhardt P 1984 Phys. Rev. Lett. 53 2477
[9] Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768
[10] St A 1987 Commun. Math. Phys. 111 409
[11] Gumbs G, Ali M K 1988 Phys. Rev. Lett. 60 1081
[12] Holzer M 1988 Phys. Rev. B 38 5756
[13] Severin M, Riklund R 1989 Phys. Rev. B 39 10362
[14] Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896
[15] Godrche C, Luck J M 1992 Phys. Rev. B 45 176
[16] Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465
[17] Doria M, Satija I 1988 Phys. Rev. Lett. 60 444
[18] Benza V G 1989 Europhys. Lett. 8 321
[19] Luck J M 1993 J. Stat. Phys. 72 417
[20] Grimm U, Baake M 1994 J. Stat. Phys. 74 1233
[21] Hrmisson J, Grimm U, Baake M 1997 J. Phys. A 30 7315
[22] Hrmisson J, Grimm U 1998 Phys. Rev. B 57 R673
[23] Tong P Q, Zhong M 2002 Phys. Rev. B 65 064421
[24] Tong P Q, Liu X X 2006 Phys. Rev. Lett. 97 017201
[25] Wotters W 1998 Phys. Rev. Lett. 80 2245
[26] Pfeuty P 1979 Phys. Lett. A 72 245
[27] Jordan P, Wigner E 1928 Z. Physik 47 631
[28] Arnesen M, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901
[29] Gringrich R and Adami C 2002 Phys. Rev. Lett. 89 270402
[30] Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608
[31] Vidal G, Latorre J I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902
[32] Wu L, Sarandy M S, Lidar D A 2004 Phys. Rev. Lett. 93 250404
[33] Gu S, Deng S, Li Y, Lin H 2004 Phys. Rev. Lett. 93 086402
[34] Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517
[35] Gong L Y, Tong P Q 2008 Phys. Rev. B 78 115114
[36] Zhu X, Tong P Q 2008 Chin. Phys. B 17 1623
[37] Zhang S J, Jiang J J, Liu Y J 2008 Acta Phys. Sin. 57 0531(in Chinese) [张松俊, 蒋建军, 刘拥军 2008 57 0531]
[38] Wang P, Zheng Q, Wang W G 2010 Chin. Phys. Lett. 27 080301
[39] Wang L C, Shen J, and Yi X X 2011 Chin. Phys. B 20 050306
[40] Osborne T, Nielsen M 2002 Phys. Rev. A 66 032110
-
[1] Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039
[2] Sachdev S 1999 Quantum Phase Transitions (Cambridge University Press, England)
[3] Grenier M, Mandel O, Esslinger T, Hnsch and Bloch I 2002 Nature 415 39
[4] Vojta M 2003 Rep. Prog. Phys. 66 2069
[5] Wang W G, Qin P Q, He L W, Wang P 2010 Phys. Rev. E 81 016214
[6] Igli F, Lin Y-C, Rieger H, Monthus C 2007 Phys. Rev. B 76 064421
[7] Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951
[8] Levine D, Steinhardt P 1984 Phys. Rev. Lett. 53 2477
[9] Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768
[10] St A 1987 Commun. Math. Phys. 111 409
[11] Gumbs G, Ali M K 1988 Phys. Rev. Lett. 60 1081
[12] Holzer M 1988 Phys. Rev. B 38 5756
[13] Severin M, Riklund R 1989 Phys. Rev. B 39 10362
[14] Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896
[15] Godrche C, Luck J M 1992 Phys. Rev. B 45 176
[16] Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465
[17] Doria M, Satija I 1988 Phys. Rev. Lett. 60 444
[18] Benza V G 1989 Europhys. Lett. 8 321
[19] Luck J M 1993 J. Stat. Phys. 72 417
[20] Grimm U, Baake M 1994 J. Stat. Phys. 74 1233
[21] Hrmisson J, Grimm U, Baake M 1997 J. Phys. A 30 7315
[22] Hrmisson J, Grimm U 1998 Phys. Rev. B 57 R673
[23] Tong P Q, Zhong M 2002 Phys. Rev. B 65 064421
[24] Tong P Q, Liu X X 2006 Phys. Rev. Lett. 97 017201
[25] Wotters W 1998 Phys. Rev. Lett. 80 2245
[26] Pfeuty P 1979 Phys. Lett. A 72 245
[27] Jordan P, Wigner E 1928 Z. Physik 47 631
[28] Arnesen M, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 017901
[29] Gringrich R and Adami C 2002 Phys. Rev. Lett. 89 270402
[30] Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608
[31] Vidal G, Latorre J I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902
[32] Wu L, Sarandy M S, Lidar D A 2004 Phys. Rev. Lett. 93 250404
[33] Gu S, Deng S, Li Y, Lin H 2004 Phys. Rev. Lett. 93 086402
[34] Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517
[35] Gong L Y, Tong P Q 2008 Phys. Rev. B 78 115114
[36] Zhu X, Tong P Q 2008 Chin. Phys. B 17 1623
[37] Zhang S J, Jiang J J, Liu Y J 2008 Acta Phys. Sin. 57 0531(in Chinese) [张松俊, 蒋建军, 刘拥军 2008 57 0531]
[38] Wang P, Zheng Q, Wang W G 2010 Chin. Phys. Lett. 27 080301
[39] Wang L C, Shen J, and Yi X X 2011 Chin. Phys. B 20 050306
[40] Osborne T, Nielsen M 2002 Phys. Rev. A 66 032110
Catalog
Metrics
- Abstract views: 5834
- PDF Downloads: 204
- Cited By: 0